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Abstract

Reinforcement learning (RL) can be used to learn treatment policies and aid decision mak-
ing in healthcare. However, given the need for generalization over complex state/action
spaces, the incorporation of function approximators (e.g., deep neural networks) requires
model selection to reduce overfitting and improve policy performance at deployment. Yet
a standard validation pipeline for model selection requires running a learned policy in the
actual environment, which is often infeasible in a healthcare setting. In this work, we
investigate a model selection pipeline for offline RL that relies on off-policy evaluation
(OPE) as a proxy for validation performance. We present an in-depth analysis of popular
OPE methods, highlighting the additional hyperparameters and computational require-
ments (fitting/inference of auxiliary models) when used to rank a set of candidate policies.
We compare the utility of different OPE methods as part of the model selection pipeline
in the context of learning to treat patients with sepsis. Among all the OPE methods we
considered, fitted Q evaluation (FQE) consistently leads to the best validation ranking,
but at a high computational cost. To balance this trade-off between accuracy of ranking
and computational efficiency, we propose a simple two-stage approach to accelerate model
selection by avoiding potentially unnecessary computation. Our work serves as a practical
guide for offline RL model selection and can help RL practitioners select policies using real-
world datasets. To facilitate reproducibility and future extensions, the code accompanying
this paper is available online.1

1. Introduction

In recent years, researchers have begun to explore the potential of reinforcement learning
(RL) to aid in sequential decision making in the context of clinical care (Yu et al., 2019).
For example, Prasad et al. (2017) considered the problem of weaning from mechanical venti-
lation, Komorowski et al. (2018) used RL to learn optimal treatments of sepsis, and Futoma
et al. (2020a,b) explored hypotension management in the ICU. This is an important step
towards realizing the promise of RL beyond game-like domains. However, many challenges
remain. To date, the most successful applications of RL have been in settings that assume
an online paradigm in which the agent can interact with the environment (Mnih et al., 2015;
Silver et al., 2017; Li et al., 2010; Kalashnikov et al., 2018), an assumption that often does
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not hold in other contexts. In healthcare settings, one typically only has access to historical
data that were collected “offline”, thus necessitating offline RL techniques (Levine et al.,
2020). In addition, the state space associated with clinical decision making is often high-
dimensional and/or continuous. Capturing such complex relationships may require learning
parameterized functions (e.g., neural networks) (Mnih et al., 2015). Thus, model selection,
i.e., selecting the appropriate hypothesis class and hyperparameters of the function ap-
proximators for learning policies, is crucial in offline RL to prevent overfitting. Despite
the importance of model selection, we currently lack a well-accepted training-validation
framework for offline RL.

One cannot simply rely on the training-validation framework used in supervised learn-
ing, in which the final model is selected based on validation performance. In RL, measuring
the equivalent of “validation performance” requires running the learned policy in the actual
environment. While this is common practice when accurate simulators are available (Fu-
jimoto et al., 2019a,b; Kumar et al., 2019; Laroche et al., 2019; Liu et al., 2020), it is not
always feasible in healthcare settings; it may be costly or even dangerous to try out multi-
ple untested treatment policies on real patients in order to find out which one is the best.
In healthcare, researchers must rely on off-policy evaluation (OPE) techniques for model
selection in offline RL. However, this approach has its own challenges. Since many OPE
estimators have been developed and they can only approximate validation performance, it
is unclear how useful different OPE methods are for model selection. Paine et al. (2020) and
Fu et al. (2021) found FQE to be a useful strategy for hyperparameter selection in offline
RL on several benchmark control tasks, yet the practical limitations and tradeoffs of these
OPE methods have not been systematically examined. Furthermore, OPE methods often
require additional model selection, i.e., they involve additional hyperparameters that must
be set a priori. In addition, nearly every OPE method requires auxiliary models that must
also be learned from data, leading to (sometimes substantial) increases in computational
costs. The lack of guidelines for offline RL model selection has led the majority of empirical
RL analyses on healthcare data to rely on pre-specified hyperparameters during training
(Gottesman et al., 2018; Tang et al., 2020), but this does not necessarily result in learning
the best policy nor does it enable fair comparisons between different RL algorithms.

In this work, we propose a training-validation framework that relies on OPE for model
selection in offline RL settings. We investigate four popular OPE methods, highlight-
ing practical considerations pertaining to their dependence on additional hyperparameters,
auxiliary models, and their associated computational costs when used to rank a set of can-
didate policies. To quantify the effectiveness of each OPE method for model selection, we
perform empirical experiments using a sepsis treatment task (Oberst and Sontag, 2019; Fu-
toma et al., 2020a). We consider common model selection scenarios including early stopping
and/or choosing neural network architectures, for both discrete state spaces (tabular) and
continuous state spaces (function approximation). Given the relative computational costs
and ranking quality of different OPE estimators, we propose a simple two-stage approach
that combines two OPE estimators to avoid expensive computation on low-quality policies.
First, we use a more efficient but less accurate OPE method to identify a promising subset
of candidate policies, and second, we use a more accurate but less efficient OPE method to
select a final policy from the pruned subset.
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Generalizable Insights about Machine Learning in the Context of Healthcare

We tackle the problem of model selection for offline RL applied to observational datasets,
such as those in healthcare applications. Selecting appropriate hyperparameters for model-
free value-based RL is crucial to prevent overfitting. Our contributions can be summarized
as follows:

• We analyze four popular OPE methods in the context of estimating validation perfor-
mance of learned policies, highlighting their dependence on additional hyperparame-
ters, auxiliary models, and their computational requirements.

• On the problem of using RL to learn policies for treating patients with sepsis, we
empirically evaluate the effectiveness of using OPE validation performance for model
selection, addressing practical considerations.

• We propose a simple two-stage selection approach that effectively combines OPE
estimators, balancing computational efficiency with policy performance.

RL shows promise in discovering better treatment policies from historical data, but the
challenges of learning and evaluating policies in offline settings have impeded its wider
adoption in high-stakes clinical domains. Our work provides one of the first empirical
demonstrations of offline RL model selection using OPE methods with a focus on practical
considerations; it sheds light on the pros and cons of various OPE methods for this purpose
and can inform future research and enable fairer comparisons when applying offline RL
to problems in healthcare. Though inspired by recent applications of RL to healthcare,
many of the insights here generalize beyond healthcare decision making to other high-
stakes domains where accurate simulators are unavailable, e.g., intelligent tutoring systems,
dialogue systems, and online advertisement delivery.

2. Offline Reinforcement Learning - Problem Setup

We consider Markov decision processes (MDPs) defined by a tuple M = (S,A, p, r, µ0, γ),
where S and A represent the state and action spaces, p(s′|s, a) and r(s, a) specify the
transition and reward models, µ0(s) is the initial state distribution, and γ ∈ [0, 1] is the
discount factor. In this work, we consider settings with discrete/continuous state spaces and
a discrete action space. A probabilistic policy π(a|s) specifies a mapping from each state to
a probability distribution over actions. When the policy is deterministic, π(s) refers to the
action with π(a|s) = 1. In RL, we aim to find an optimal policy π∗ = arg maxπ J(π;M)
that has the maximum expected performance in M. The value of policy π with respect to
M is defined as v(π) = J(π;M) = Es∼µ0 [V π(s)]; here, the state-value function is defined
as V π(s) = EπEM

[∑∞
t=1 γ

t−1rt | s1 = s
]
. The action-value function, Qπ(s, a), is defined

by further restricting the action taken from the starting state.
Throughout this paper, we focus on the offline setting. In contrast to an online setting in

which one can interact withM (either directly or via a simulator), in offline RL, one only has
access to data that were previously collected. More precisely, one has access to an observa-
tional dataset Dobs = {si, ai, ri, s′i}Ni=1 consisting of N transitions, collected fromM by one
or multiple behavior policies denoted by πb. The dataset can also be considered as a collec-
tion of m episodes, Dobs = {τj}mj=1, where each episode is τ = (s1, a1, r1, · · · , sL, aL, rL) with
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L denoting the length of episode τ . Given the challenges such a setting presents (i.e., limited
exploration), we cannot necessarily identify an optimal policy (Lange et al., 2012; Levine
et al., 2020); instead, we aim to learn a policy with low suboptimality J(π∗;M)−J(π;M).
We focus on model-free, value-based methods for offline policy learning – specifically, fitted
Q iteration (FQI) (Ernst et al., 2005; Riedmiller, 2005; see Alg. A.1 in Appendix A) – as
it applies to problems with either discrete state spaces (the tabular setting) or continuous
state spaces (the function approximation setting, where states are represented as feature
vectors x(s) ∈ Rd).

Given a policy π, its performance (i.e., J(π;M), the expected cumulative reward inM)
can be estimated from historical data collected by some other policy (or policies) πb using
off-policy evaluation (OPE) (Voloshin et al., 2019). OPE is inherently difficult because it
requires estimating counterfactuals: we want to understand what would have happened had
the agent acted differently from how it acted in historical data. We discuss four popular OPE
methods in Section 3.2 and show how they can be used to estimate validation performance
in the context of model selection for offline RL.

3. Offline RL Model Selection using OPE

We present a model selection framework for offline RL based on OPE. First, we analyze four
common OPE methods in the context of model selection. We highlight practical consid-
erations including their dependence on additional hyperparameters and auxiliary models,
as well as computational requirements. Second, we propose a simple two-stage approach
for model selection that combines two OPE estimators in order to balance the trade-off
between ranking quality and computational efficiency.

OPERL

Candidate 
Policies

Est. Policy
Values

select
best

Figure 1: The observational dataset Dobs is first split into two mutually exclusive parts,
Dtrain and Dval. The training data Dtrain are used to derive a set of candidate policies by
running some RL algorithm (e.g., FQI). Each policy is evaluated using an OPE method on
the validation data Dval to obtain its estimated policy value v̂(πk). Finally, we select the
policy that achieves the highest estimated validation performance.
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3.1. A Model Selection Framework for Offline RL

The model selection framework commonly used in supervised learning (Murphy, 2012; Good-
fellow et al., 2016) can be adapted for offline RL, where OPE methods are used to estimate
the validation performance (Figure 1). Given an observational dataset, we first split it into
two mutually exclusive parts: a training set Dtrain and a validation set Dval, assumed to fol-
low the same data distribution (the same MDP and the same behavior(s)). During training,
a set of K candidate policies {πk}Kk=1 are derived from the Dtrain using an algorithm such as
FQI (Alg. A.1), where each policy is learned with a different hyperparameter setting (e.g.,
training iterations, neural network architectures). Using OPE, we then assign a scalar score
to each candidate policy πk by estimating its value using Dval. The scores collectively result
in a ranking that can then be used to identify the best policy. While seemingly straightfor-
ward, such a model selection framework has not been consistently applied, in part because
of the practical challenges that one encounters in offline settings.

3.2. Using OPE for Model Selection

Compared to measuring validation performance in a supervised learning setting (by checking
predictions against ground-truth labels), measuring validation performance in offline RL
cannot be simply done using the observed returns from the validation set. This is because
from the same state, the evaluation policy may choose a different action (or a different
distribution over actions) compared to the behavior policy. Thus, we have to use OPE
approaches, which themselves rely on additional hyperparameters or learning additional
models. In this section, we provide a qualitative comparison of popular OPE methods.
We describe each OPE and its mathematical formalization. In addition, we describe any
additional hyperparameters that must be set a priori, dependencies on auxiliary models,
and computational requirements when used for model selection. As shown in Figure 1, we
use the validation data Dval as input to OPE, but to simplify the exposition below, we use
D for notational convenience. We assume D consists of m episodes and N transitions, and
there are K candidate policies. For computational complexity, we focus on the function
approximation setting that involves fitting classification/regression models; the equivalent
of these model dependencies in the tabular setting can be obtained efficiently via maximum
likelihood estimation (see Appendix B).

3.2.1. Weighted Importance Sampling (WIS)

Due to differences between the evaluation policy and the behavior policy, each episode can
be more (or less) likely to occur under the evaluation policy compared to the behavior policy.
Importance sampling estimates the value of the evaluation policy from the validation data
by re-weighting episodes according to how relatively likely they are to occur (Păduraru
et al., 2013; Voloshin et al., 2019).

Formalization. Given a policy π that we aim to evaluate and a behavior policy πb that
generated episode τ = (s1, a1, r1, · · · , sL, aL, rL), we define the per-step importance ratio

ρt = π(at|st)
πb(at|st) and the cumulative importance ratio ρ1:t =

∏t
t′=1 ρt′ . The WIS estimator is

calculated as
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v̂WIS(π) =
1

m

m∑
j=1

GWIS(τj ;π), where GWIS(τj ;π) =
ρ
(j)

1:L(j)

wL(j)

L(j)∑
t=1

γt−1r
(j)
t

 ,

where wt = 1
m

∑m
j=1 ρ

(j)
1:t is the average cumulative importance ratio at horizon t. We use

WIS (a biased but consistent estimator) rather than ordinary importance sampling (an
unbiased estimator) because it can provide more stable performance (Păduraru et al., 2013;
Voloshin et al., 2019).

Hyperparameters. When the evaluation policy π is deterministic such that π(a|s) is exactly
1 for a single action and 0 for all others, an episode will receive zero weight if π and πb take
different actions at any timestep. Such episodes are thus effectively discarded, and only
episodes with non-zero weights are included in WIS calculation (Gottesman et al., 2018).
This can be especially problematic with small sample sizes and long episodes, or when π
and πb differ significantly. To overcome this issue, it is common to soften policy π with the
hope of increasing the effective sample size and reducing variance (Raghu et al., 2017a,b;
Komorowski et al., 2018): e.g., π̃(a|s) = 1a=π(s)(1−ε)+1a6=π(s)(

ε
|A|−1). While this results in

a value estimate for π̃ rather than for π, it is usually sufficiently close. The hyperparameter
ε is typically set to a small value using rules of thumb (e.g., ε = 0.01).

Dependencies on Auxiliary Models. Since we typically do not know the true behavior policy,
we need to estimate it from data (Hanna et al., 2019; Chen et al., 2019). This can be

obtained as either π̂b(a|s) = count(s,a)
count(s) for discrete states, or for continuous states, by fitting

a multiclass classification model that predicts the action distribution of the behavior policy
given a state, trained using the softmax cross-entropy loss (Torabi et al., 2018).

Computational Cost. WIS requires fitting a single model π̂b over all observed state-action
pairs {x(si), ai}Ni=1 and performing one inference run on all observed states {x(si)}Ni=1,
resulting in O(N) complexity for both fitting and inference. Importantly, the computational
cost can be considered amortized since it does not depend on K, the number of candidate
policies.2 This allows us to apply WIS to a large candidate set with relatively little increase
in computation.

3.2.2. Approximate Model (AM)

In the online setting, we evaluate a policy by running it in the actual environment. While we
do not have access to the true environment in the offline case, we can build an approximate
model of the environment from D. AM is a model-based approach that estimates the policy
value by first learning a model of the environment and then performing policy evaluation
using the learned model (Jiang and Li, 2016; Voloshin et al., 2019). As the name suggests,
AM is only an approximation but may be sufficient for providing a reasonable estimate of
the policy value.

2. To be precise, applying WIS on each policy will require new importance ratios to be computed, but the
cost of such arithmetic operations is minimal compared to performing fitting/inference of a parameterized
model (e.g., neural networks).
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Formalization. To learn a set of models for AM, we need to fit the transition dynamics
p̂(s′|s, a) and the reward function r̂(s, a), and if necessary, the initial state distribution µ̂0(s),
and/or the termination model p̂term(s, a) for episodic problems. Given these estimated
parameters of the environment, we can estimate the value functions V̂AM and/or Q̂AM by
performing analytic or iterative policy evaluation for the given policy (only applicable to
the tabular setting, i.e., discrete state and action spaces), or use the learned model as a
simulator to obtain average returns over Monte-Carlo rollouts (Jiang and Li, 2016; Voloshin
et al., 2019). The final policy value can be calculated as the average value of initial states
(or as the expectation over the estimated initial state distribution):

v̂AM(π) =
1

m

m∑
j=1

V̂ π
AM(s

(j)
1 ) or

∑
s1∈S

µ̂0(s1)V̂
π
AM(s1),

where V̂ π
AM(s) = E

at∼π(·|st)
rt∼r̂(st,at)

st+1∼p̂(·|st,at)

[
H∑
t=1

γt−1rt

∣∣∣ s1 = s

]
.

Hyperparameters. When Monte-Carlo rollouts are used for evaluation, in lieu of a ter-
mination model (which itself requires specifying a threshold on the predicted termination
probability), it is more common to directly set the maximum length of rollout H, which
corresponds to the evaluation horizon. One possible heuristic is to set H based on the
typical episode length L̃ in historical data. However, if we expect the learned policy to out-
perform the behavior policy in a particular way and produce longer or shorter episodes (e.g.,
keeping patients healthy for a longer time, or discharge patients alive earlier), it may be
more appropriate to adjust H depending on the specific setting. When analytic or iterative
policy evaluation is used (for tabular settings), we consider H →∞.

Dependencies on Auxiliary Models. As mentioned above, AM depends on the following
auxiliary models: p̂, r̂, and possibly µ̂0, p̂term.

• For discrete state spaces, these quantities can be found using maximum likelihood

estimation: p̂(s′|s, a) = count(s,a,s′)
count(s,a) , r̂(s, a) =

∑N
i=1 ri1(si=s,ai=a)

count(s,a) , µ̂0(s) = count(s1=s)
m

(the termination model can be considered part of the transition model).
• For continuous state spaces, these models can be found using supervised learning.

Even though the true environment may be stochastic and one could model the full
probability distributions of transitions and rewards in low-dimensional settings (e.g.,
Gaussian dynamics network (Torabi et al., 2018; Yu et al., 2020; Kidambi et al., 2020)),
it makes the Monte-Carlo rollouts more susceptible to noise. One could generate multi-
ple rollouts from each state, but this requires a new hyperparameter and significantly
more computation. Alternatively, it is common to impose simplifying assumptions
and instead learn the following regression models (Voloshin et al., 2019; Rajeswaran
et al., 2020): ∆̂s(x(s), a) an autoregressive model to predict the expected change in
state features and r̂(x(s), a) to predict the expected immediate reward. These models
can be trained with mean squared error as the loss function. Furthermore, instead of
modeling the full probability distribution of initial states as µ̂0, we can directly use
the observed initial states as the starting states for rollouts. Termination models are
not typical, and instead we use H as the fixed rollout length.
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Computational Cost. Similar to WIS, the cost of auxiliary model fitting does not depend on
K, the number of candidate policies; only a single set of models needs to be learned using
the following pattern sets: {〈x(si), ai〉,x(s′i)−x(si)}Ni=1 for ∆̂s(s, a), and {〈x(si), ai〉, ri}Ni=1

for r̂(s, a). The fitting complexity is thus O(N). However, unlike WIS, the inference cost
for AM scales linearly with K, because each candidate policy requires a different set of
rollouts. The overall inference cost is O(HmK), for advancing H steps from the m initial
states following each of the K candidate policies, assuming they are all deterministic. The
inference cost for a set of probabilistic policies is approximately O(|A|HHmK) in the worst
case, because we need to consider all possible action sequences with nonzero probability
following each initial state and weight them appropriately.

3.2.3. Fitted Q Evaluation (FQE)

Instead of reweighting the observed episodes (WIS) or building an approximate environment
model (AM), we can algorithmically summarize the performance of the evaluation policy
using the Q-function, a mapping from state-action pairs to the expected cumulative reward.
This can be done by running FQE, an off-policy value-based algorithm that directly learns
Q̂πFQE(s, a), the Q-function of π, from historical data.

Formalization. FQE (Alg. A.2) is a value-based, temporal difference algorithm (Le et al.,
2019) and is closely related to expected SARSA with respect to a fixed policy for policy
evaluation (van Seijen et al., 2009). Each iteration of the algorithm applies the Bellman
equation for Qπ to compute the bootsrapping targets for all transitions from D using the
previous estimates (line 4) and then applies function approximation via supervised learning
(lines 5-6). The algorithm outputs Q̂πFQE(s, a), the estimated Q-function of π. The final
value estimate can be calculated as the average value for the initial states in D:

v̂FQE(π) =
1

m

m∑
j=1

V̂ π
FQE(s

(j)
1 ), where V̂ π

FQE(s) =
∑
a∈A

π(a|s)Q̂πFQE(s, a).

Hyperparameters. Similar to AM, FQE also has a hyperparameter H, the number of FQE
iterations, which corresponds to the evaluation horizon (the output Q̃H is the H-step Q-
function of π).

Dependencies on Auxiliary Models. For each candidate policy πk, we need to fit a sequence
of Q-networks {Q̃h}Hh=1 (Alg. A.2, line 6).

Computational Cost. Unlike WIS and AM where the number of auxiliary models does not
depend on the number of candidate policies (the fitting costs are amortized), FQE scales
linearly with K because a different set of models is needed for each πk. Furthermore, due
to bootstrapping where the target value of the current iteration depends on the result of
the previous iteration (Alg. A.2, line 4), each FQE iteration involves both inference and
fitting of Q̃, resulting in a total fitting complexity of O(HNK) for both deterministic
and probabilistic candidate policies. Notably, the process of applying FQE to each policy
cannot be parallelized due to this dependency. However, multiple policies can be evaluated
in parallel. To obtain the final value estimate, each Q̃H network is applied to the initial
states from m episodes, resulting in inference complexity of O(mK). Overall, FQE is much
more expensive compared to WIS/AM in terms of computational cost (and more expensive
than policy learning) and can take much longer to run.
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3.2.4. Weighted Doubly Robust (WDR) Estimator

WDR is a hybrid method that combines importance sampling from WIS with value esti-
mators V̂ π and Q̂π obtained from AM or FQE (Jiang and Li, 2016; Thomas and Brunskill,
2016). In addition to reweighting the observed returns (as in WIS), WDR leverages the
value estimates by incorporating them at every time step with the hope of reducing the
overall variance.

Formalization. We consider two versions of this estimator: WDR-AM and WDR-FQE. The
estimator is defined as follows (with ρ1:0 = 1):

v̂WDR(π) =
1

m

m∑
j=1

GWDR(τj ;π),

where GWDR(τj ;π) =

L(j)∑
t=1

[
ρ
(j)
1:t

wt
γt−1r

(j)
t −

(
ρ
(j)
1:t

wt
Q̂π(s

(j)
t , a

(j)
t )−

ρ
(j)
1:t−1
wt−1

V̂ π(s
(j)
t )

)]
.

WDR is often assumed to be better than WIS and FQE/AM used by themselves because
in theory, it is a consistent low-variance estimator if either importance ratios (i.e., behavior
policy) or the value function estimates are properly specified (hence the name “doubly
robust”). However, more recent empirical work has shown that WDR methods can be less
accurate and have larger errors than its constituent OPE methods due to various reasons,
such as stochastic transitions/rewards or high variance in importance ratios (Jiang and Li,
2016; Thomas and Brunskill, 2016; Voloshin et al., 2019).

Hyperparameters. WDR has the hyperparameters of its constituent parts (both ε and H).

Dependencies on Auxiliary Models. Beyond the models from WIS/AM/FQE, the two WDR
approaches do not rely on any additional auxiliary models.

Computational Cost. There is no additional computation needed for model fitting. However,
there are some notable differences in terms of inference complexity because WDR requires
estimates of both Q and V for all N state-action pairs, rather than the m initial states.

• AM estimates Q/V by performing Monte-Carlo rollouts. Given the softened policy π̃,
in order to obtain V̂ π̃

AM(s) =
∑

a∈A π̃(a|s)Q̂π̃AM(s, a) for each state, we need to perform
rollouts that consider all possibilities of the future following π̃, which is exponential in
the rollout length H. This results in O(|A|HHNK) inference complexity to compute
WDR-AM exactly, since the exponential rollouts need to be done for all N transitions
and all K candidate policies, which is prohibitively expensive. If the evaluation policy
is deterministic, then a slightly more practical solution is to use the softened π̃ to
calculate importance ratios, but use the original π to perform rollouts, resulting in
O(HNK) inference complexity, which is still relatively expensive. In light of these
computation requirements, we omitted WDR-AM from our experiments on problems
with continuous state spaces in favor of WDR-FQE.

• Since FQE already learns parameterized functions for Q̂ (and thus for V̂ ), we only
need to perform additional inference runs using all N state-action pairs as input,
resulting in O(NK) inference complexity.
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Table 1: Qualitative comparison of OPE methods when used for model selection over K
candidate policies, including: any additional hyperparameters that must be set a priori,
dependencies on additional estimated quantities (discrete state space) or auxiliary super-
vised models (continuous state space), and approximate computational complexity. For
hybrid approaches (WDR), the listed complexity estimates are for additional computations
not already done by the constituent OPE estimators. We assume the dataset consists of
m episodes and N transitions, and all candidate policies are deterministic. ε is the policy
softening hyperparameter and H is the length of the evaluation horizon. Other notation
are described in Section 3.2. A more detailed breakdown can be found in Appendix B.

OPE Hyperparameters Dependencies
Complexity

Fitting Inference

WIS ε π̂b O(N) O(N)
AM H p̂, r̂ O(N) O(HmK)

FQE H {Q̃h}Hh=1 for each πk O(HNK) O(mK)
WDR-AM ε; H WIS + AM WIS + AM O(|A|HHNK)
WDR-FQE ε; H WIS + FQE WIS + FQE O(NK)

3.3. Combining Multiple OPE Estimators for Model Selection

While every OPE outputs an estimated value of the evaluation policy, each method does
so in a different way, e.g., by estimating the behavior policy, estimating the environment
model, or directly estimating the Q function. Based on past OPE literature (that focused on
accuracy in estimating policy value (Voloshin et al., 2019; Fu et al., 2021)) and our analyses
on computational costs (Table 1), we note that WIS/AM are more efficient but tend to be
less accurate, whereas FQE is less efficient but tends to be more accurate. Given a large
candidate set, it might not be worthwhile applying expensive OPE methods on low-quality
policies. With this insight, we propose a simple, practical procedure for combining two
OPE estimators.

Two-stage selection. Instead of selecting the best policy based on ranking from a single
OPE method, we do this in two stages: in the first stage, a computationally efficient OPE
(e.g., WIS) is applied to the entire candidate set in order to identify a promising subset (e.g.,
the top percentiles); in the second stage, a more accurate OPE (e.g., FQE) is used to rank
within the pruned subset. The performance of the two-stage selection procedure depends
on the initial subset size α as well as choices of the two OPE estimators. This additional
hyperparameter α needs to be prespecified; in practice, this can be determined based on
available computational resources. α dictates the total computational cost as well as to
what extent the final selected policy depends on each of the two OPE estimators: α = 1
defaults to the first OPE estimator, while α = K defaults to the second OPE estimator.
See Appendix F for a detail discussion and theoretical analyses.

As baselines for comparison, we consider average score and average ranking, two
naive ways of combining OPE scores that could take advantage of multiple OPE methods,
but do not benefit from the computational savings as the two-stage approach and may be
susceptible to outliers due to high variance of certain OPE estimators. We also compare to
WDR (Section 3.2.4), a hybrid method that combines WIS with AM/FQE.
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4. Experimental Setup

To test the utility of different OPE methods in model selection for offline RL, we performed
a series of empirical experiments and evaluated how well OPE estimates of validation per-
formance can help in selecting policies among a candidate set. All of our experiments rely
on the following steps: (i) generating historical data Dtrain and Dval from a simulator, (ii)
applying an RL algorithm on Dtrain and obtaining the set of candidate policies by using
different hyperparameters during training, (iii) using OPE and Dval to estimate validation
performance for each candidate policy, and (iv) quantifying the ranking quality and regret
of OPE estimators with respect to true values of candidate policies. We discuss the details
of these steps below.

4.1. Environment & Dataset Generation

While this work focuses on the offline setting, we consider a simulated problem because we
need to evaluate the quality of policy ranking according to each OPE with respect to the true
policy performance. We use the sepsis simulator adapted from Oberst and Sontag (2019)
and Futoma et al. (2020a), which is modeled after the physiology of patients with sepsis.
More details of the simulation setup can be found in Appendix C and the source code; below
we provide a brief description. The underlying patient state consists of 5 discrete variables:
a binary indicator for diabetes status, and 4 ordinal-valued vital signs (heart rate, blood
pressure, oxygen concentration, glucose). We consider two state representations: a discrete
state space with |S| = 1, 440, and a continuous state space where each state corresponds to
a feature vector x(s) ∈ {0, 1}21 that uses a one-hot encoding for each underlying variable.
There are 8 actions based on combinations of 3 binary treatments: antibiotics, vasopressors,
and mechanical ventilation, where each treatment can affect certain vital signs and may
raise/lower their values with pre-specified probabilities. A patient is discharged only when
all vitals are normal and all treatments have been stopped; death occurs if 3 or more vitals
are abnormal. Rewards are sparse and only assigned at the end of each episode, with +1 for
survival and −1 for death, after which the system transitions into the respective absorbing
state. For data generation, episodes are truncated at a maximum length of 20. We used a
uniformly random policy to generate 10 pairs of datasets (for training and validation), each
with large number of episodes (m = 10,000) and a different random seed. While this data
generation process ensures sufficient exploration in the state-action space, it makes certain
assumptions that might not hold in practice; we explore some of these issues in Section 5.2.

4.2. Implementation Details

To learn the policies, we ran FQI (Alg. A.1) for up to 50 iterations using a neural network
function approximator. We used 10,000 episodes following the uniformly random policy for
both training and validation unless otherwise specified, and repeated each experiment for
10 replication runs. We followed the procedures outlined in Section 3.2 to learn appropri-
ate auxiliary models (either via MLE or as individual supervised tasks) and applied OPE
methods using the learned models. We used ε = 0.01 and H = 20 as the default OPE hyper-
parameters following recommendations provided in Section 3.2. By default, we used neural
networks consisting of one hidden layer with 1,000 neurons and ReLU activation to allow
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for function approximators with sufficient expressivity. We trained these networks using
the Adam optimizer (default settings) (Kingma and Ba, 2015) with a batch size of 64 for a
maximum of 100 epochs, applying early stopping on 10% “validation data” (specific to each
supervised task) with a patience of 10 epochs. We minimized either the mean squared error
(MSE) for regression tasks (each iteration of FQI/FQE, dynamics/reward models of AM),
or the cross-entropy loss with softmax activation for classification tasks (behavior policy
for WIS). For FQI/FQE, we also added value clipping (to be within the range of possible
returns [−1, 1]) when computing bootstrapping targets to ensure a bounded function class
and encourage better convergence behavior (Mnih et al., 2015).

4.3. Evaluation

Given our goal is to select the best (or a good) policy from the candidate set, the OPE
validation scores does not necessarily need to match exactly with true policy performance;
they only need to correlate well (Irpan et al., 2019). Thus, we do not present mean squared
error (MSE), a common metric used to evaluate OPE methods (Voloshin et al., 2019).
Instead, we report the following quantitative metrics (Paine et al., 2020; Fu et al., 2021):

• Spearman’s rank correlation ρ between OPE scores and ground-truth policy values.
This measures the overall ranking quality, i.e., how well an OPE method can rank
policies according to their true performance from high to low.

• Regret, defined as max
k=1···K

v(πk) − v(πk∗) where k∗ = arg max
k′=1···K

v̂(πk′) corresponds to

the candidate policy with the best OPE validation score. This measures how far the
identified “best” policy is from the actual best policy among the candidate set. We
also report top-n regret (i.e., regret@n), which is the smallest regret for the n policies
with the highest OPE scores.

We evaluated policies analytically using the matrix inversion method and ground-truth
MDP model parameters p, r, and µ0 from the sepsis simulator to obtain the true value
v(π). While regret ultimately determines how well model selection can identify the best
policy, we consider rank correlation and regret@n as they indicate to what extent an OPE
method can be used for identifying the promising subset in the two-stage selection.

5. Experiments & Results

In this section, we present empirical experiments that compare the utility of OPE methods
for model selection in offline RL. In Section 5.1, we first consider the effectiveness of OPE
methods in selecting neural network architectures and training hyperparameters. Specifi-
cally, we quantitatively measure the overall ranking quality, as well as the regret of selected
policies. We also compare strategies for combining multiple OPE estimators, including
naive averaging (of scores or ranking), WDR, as well as the proposed two-stage selection.
To test the robustness of each OPE method in different settings and to enhance the gen-
eralizability of our findings, in Section 5.2, we explore robustness to the additional OPE
hyperparameters as well as various data conditions with different sample sizes or different
behavior policies. The main experiments focus on the continuous state space setting; results
for the discrete state space setting can be found in Appendix D.2.
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5.1. Model Selection of Neural Architectures & Training Hyperparameters

When a function approximator (such as neural networks) is used, there are many hyper-
parameters related to architectures and training procedures that affect model complexity
and can lead to overfitting. In this experiment, we consider learning policies on the sepsis
simulator with a wide range of hyperparameters (Table 2). Based on the hyperparameter
combinations, we trained a total of 96 Q-networks using FQI on the training set, corre-
sponding to 96 candidate policies, and then evaluated each candidate policy using OPE on
validation data.

Table 2: Hyperparameter values considered for neural FQI on the sepsis simulator datasets.

Hyperparameter Values

Hidden layers {1, 2}
Hidden units {100, 200, 500, 1000}
Learning rate {1e-3, 1e-4}
FQI training iterations {1, 2, 4, 8, 16, 32}

5.1.1. Comparison Across OPE Methods

To measure the ranking quality of each OPE method, we first inspect the scatter plots
of OPE scores and true policy values (Figure 2 top). We quantify ranking quality using
Spearman’s rank correlation ρ (reported as the means and standard deviations over 10 runs).
In addition to overall ranking quality, we also measure regret@1, regret@5, and regret@10
to quantify how well model selection can help us choose the best (or a good) policy among
the candidate set (Figure 2 bottom).

Results & Discussion. We observe that FQE produces the best ranking, with the highest
ρ = 0.89 and points lying closest to the 45-degree line. WIS scores have a large variance and
span almost the entire [−1, 1] range even for policies with a true value > 0, but there appears
to be good separation between policies with value > 0 and those < 0, leading to a relatively
high ρ = 0.74. AM consistently underestimates the policy value, assigning scores close to
0 for almost all policies, yet it maintains a reasonable overall ranking with ρ = 0.66. The
hybrid method WDR-FQE, though commonly assumed to outperform its constituent OPE
estimators (in terms of MSE), actually produces worse ranking than both WIS and FQE,
resulting in a lower ρ = 0.64. The poor accuracy (contributing to poor ranking) of hybrid
methods has also been observed for other RL tasks in past work (Voloshin et al., 2019;
Fu et al., 2021) and is likely due to various factors including limited data, environment
stochasticity, estimated behavior policy, and model misspecification. We observe similar
trends in regret@1 where FQE and WIS consistently achieves the lowest regret, while WDR-
FQE sometimes leads to a very high regret (> 0.5). However, all methods achieve near-
zero regret for regret@5 and regret@10 and in general can identify the best candidate
policy in the top-5/top-10 set. We also note that validation scores based on FQI value
estimates or the temporal difference error produce poor ranking with ρ < 0.3 and high regret
(Appendix D.1), highlighting the need to use OPE for estimating validation performance.
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Figure 2: Top – Scatter plots comparing true policy value with OPE validation score. The
results from 10 runs (each with 96 points) are overlayed in each OPE subplot. All values
are clipped to the range of possible returns [−1, 1] for clarity of visualization. Spearman’s
rank correlations are listed in the title of each subplot (mean ± std over 10 runs). FQE
achieves the highest ρ and produces the best ranking over candidate policies. Bottom –
Top-n regret of different OPE methods in model selection compared to the best candidate
policy. While the best candidate policy does not always have the highest OPE validation
score, it is frequently among those with the top-5/top-10 validation performance.

5.1.2. Combining Multiple OPE Estimators

Given that WIS and FQE performed well, we explored various strategies of combining the
two methods, in addition to WDR-FQE. As described in Section 3.3, we apply the proposed
two-stage approach where WIS is used to select a promising subset (containing policies with
the top WIS scores). In practice, the subset size α needs to be pre-determined (for example,
based on computational constraints), but here we used a range of different sizes and explored
their effect. We also consider two naive approaches – average score and average ranking of
WIS and FQE – as baselines. We computed regret and repeated the experiments for the
same 10 replication runs as before (Figure 3 left).

Results & Discussion. Simple strategies such as average score and average ranking
outperform the more sophisticated WDR-FQE, achieving lower regret compared to WIS
(and comparable regret with FQE). However, these approaches rely on computing both
OPE estimators on the entire candidate set and are thus computationally expensive. The
two-stage approach achieves comparable or lower regret than FQE across different subset
sizes, giving the lowest regret at a subset size of 24 (and 48). Moreover, with minimal (but
arguably necessary) additional computation compared to using WIS alone, we can achieve
lower regret using the two-stage approach compared to using FQE alone, with potentially
greater savings in computational costs (Figure 3 right).
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Figure 3: Comparison of regret (left) and relative computational cost (right) of different
strategies of combining WIS and FQE for model selection. The computational costs are
normalized with respect to a complete FQE evaluation over the entire candidate set (K =
96) and are for illustration purposes only. Two-stage selection with an intermediate subset
size (e.g., 24) provides the best balance between performance and computational costs.

5.2. Sensitivity Analyses

In the experiments above, we made several assumptions about the validation data: (i)
we used default auxiliary hyperparameters, (ii) we assumed a uniformly random behavior
policy, and (iii) our validation data had a large sample size. These assumptions might not
hold in practice. In this section, we vary the experimental conditions along these dimensions
to test the generalizability of our conclusions. For these experiments, we kept the training
set and training procedures the same throughout this comparison to generate the same
candidate set for each run, so that the only difference comes from different validation data.
We also kept the same neural network architecture and training procedures for auxiliary
models. These experiments are repeated for the same 10 replication runs. We focus our
results on the three non-hybrid OPE methods (WIS, AM, and FQE) as well as the proposed
two-stage approach combining WIS with FQE with a subset size of 24. Additional sensitivity
analyses for both discrete and continuous state spaces can be found in Appendix D.2.
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Figure 4: Regret comparisons for model selection with different auxiliary OPE hyperpa-
rameters. AM is the most robust to H but underperforms the other two OPE methods.
WIS and FQE produce low regret given reasonable ε or H values.
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5.2.1. Sensitivity to OPE Hyperparameters

Since each OPE method has its own auxiliary hyperparameters, it is important to under-
stand how they may affect OPE validation ranking quality, especially as there is no effective
way of selecting them. In this experiment, we focus on the hyperparameters that must be
set a priori, namely: the policy softening parameter ε for WIS and the evaluation horizon
H for AM/FQE. We vary these hyperparameters in the reasonable ranges and measure the
corresponding regret following model selection. For continuous state space models, even
though the auxiliary models contain hyperparameters themselves (e.g., the neural network
architecture), these can be tuned via standard model selection within each auxiliary super-
vised learning task; for consistency, we kept these hyperparameters the same throughout.

Results and Discussion. We visualize the regret in Figure 4. Among the three OPE
methods, AM appears to be the most robust to different H values, although the regret it
obtains is higher than the other two OPE methods and does not decrease as H increases. For
WIS, the lowest regret is achieved at ε = 0.1, but using ε values that are too small (potential
issues with effective sample size) or too large (π̃ is too far from π) led to regret with slightly
larger variance. FQE achieves more stable regret at larger evaluation horizons, e.g., H ≥ 10,
that correspond to a closer approximation to a full, infinite-horizon evaluation. Although
WIS and FQE are more sensitive to their auxiliary hyperparameters, the performance is
optimal (or close to optimal) following existing rules of thumb and recommendations we
provided in Section 3.2.

5.2.2. Sample Size of Validation Data

In our main experiments, we used validation data with 10,000 episodes, which is as large
as the training data. In supervised learning, the size of validation data is more commonly
only a fraction of the training data size. In this comparison, we reduced the amount of
validation data used for OPE and measured the regret.
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Figure 5: Regret comparison for OPE using validation data with varying sample sizes and
varying behaviors. Left – A larger validation set generally results in lower regret across all
OPE methods. Right – Less exploratory behavior can lead to higher regret. In almost all
scenarios, the proposed two-stage approach is able to maintain low regret while reducing
overall computational cost.
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Results and Discussion. All OPE methods tend to benefit from larger validation sizes,
achieving lower regret (Figure 5, left). The trend is less apparent for WIS (which generally
results in noisier value estimates) and for AM (possibly due to model misspecification). The
proposed two-stage selection (combining WIS and FQE with a subset size of 24) consistently
matches (and sometimes slightly outperforms) FQE in terms of regret, except for very
small sample sizes (e.g., 500 episodes). This could be because WIS is more susceptible to
large variances due to limited sample sizes and produces less reliable pruning in the first
stage. Given reasonably sized validation data (1,000 episodes or more for this problem), the
proposed two-stage approach maintains performance comparable to FQE, while reducing
computational costs.

5.2.3. Type of Behavior & Extent of Exploration

The behavior policies used to collect validation data can affect which part of the state-action
space receives sufficient exploration and the resultant OPE model selection performance.
While we previously assumed a uniformly random policy that provides sufficient exploration,
this is rarely the case in real life; e.g., clinicians do not behave randomly when selecting
treatments. Moreover, historical data may be generated by multiple clinicians who use
different policies. Here, we examine how the behavior policy affects model selection. We
first considered validation data containing 10,000 episodes following an ε-greedy behavior
policy (with ε = 0.1); though this produces near-optimal behavior, it limits the extent of
exploration. We also considered data that contained 5,000 episodes of both the random
policy and the ε-greedy policy to create a mixture of behaviors (with the same total sample
size of 10,000 episodes). Although these two settings violate the assumption that training
data and validation data follow the same data distribution (as discussed in Section 3), the
evaluation problem is still valid since all data are drawn from the same underlying MDP
environment.

Results and Discussion. The random behavior policy produces more exploratory data
compared to an ε-greedy policy, leading to slightly lower regret in general (Figure 5, right).
Surprisingly, even when a mixture of multiple behavior policies is used, WIS is not heavily
affected by this policy misspecification and still leads to low regret. Reassuringly, the
proposed two-stage selection (with a subset size of 24) is able to maintain (or outperform) the
regret achieved by FQE while reducing overall computation, even in challenging situations
with less exploratory data or mixed behaviors.

6. Conclusion

Model selection for offline RL is challenging because we cannot easily obtain the equivalent of
“validation performance” given only historical interaction data. To date, RL for healthcare
research has skirted the issue of model selection by either assuming default hyperparameters
or relying on ground-truth performance only obtainable with simulators. In this work, we
explored a model selection framework for offline RL that uses OPE as a proxy estimate for
validation performance. We provided an in-depth analysis of how this can be implemented
using four popular OPE methods, detailing the practical considerations such as the reliance
on auxiliary hyperparameters/models and computational requirements. On a simulated
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RL task of sepsis treatment, we found that FQE consistently provides the most accurate
ranking over candidate policies and is the most robust to various data conditions (sample
sizes and behavior policies). Given the high computational cost of FQE, we proposed
a simple two-stage approach to combine two OPE estimators and demonstrated that it
outperforms simple averaging or more sophisticated doubly-robust methods, while avoiding
expensive computation on low-quality policies.

There has been increasing interest on the problem of model selection for offline RL in
recent years (Appendix E). Recently, Paine et al. (2020) demonstrated that FQE is a useful
strategy for hyperparameter selection in offline RL on several benchmark control tasks.
In contrast, we compare multiple OPE estimators both qualitatively and quantitatively to
address questions of practical importance for healthcare settings. Our empirical results
further corroborate the findings of Irpan et al. (2019) and Paine et al. (2020), who showed
that FQI values and TD errors are poor validation metrics due to overestimation of value
functions during training, thus highlighting the importance and necessity of using OPE
to estimate validation performance. During the preparation of this work, Fu et al. (2021)
published a benchmark suite for comparing OPE methods on continuous control tasks,
with Spearman’s correlation as one of evaluation metrics. Similar to our empirical findings,
they found FQE to consistently produce the best results, whereas other OPE approaches
(including AM and WIS) varied more with respect to the specific task and modeling choice.
However, their focus is on presenting a standardized benchmark to compare OPE methods,
rather than carefully reflecting on the practical and implementation issues that arise when
using OPE for model selection.

We note several important limitations of this work. First, our experiments are performed
on a simulated RL task because of the need to obtain true performance of learned policies.
Though we explored different data conditions including behavior policies and sample sizes,
our simulation might not capture all nuances in real data collection. In particular, certain
properties of the simulation (discrete action spaces, short horizons, noiseless observations,
no missingness, sparse terminal rewards) may limit the generalizability of our conclusions
to real observational data and other RL problems. Using a simulator also does not address
important issues that may arise when designing the RL problem setup based on real datasets
(e.g., defining a good action space or meaningful initial states). We encourage future work
to investigate more healthcare RL problems using our released code. Though the simulated
sepsis task may not directly produce any clinically relevant insights for treating sepsis, we
expect future work on sepsis management (Komorowski et al., 2018; Raghu et al., 2017a,b;
Killian et al., 2020) to build upon our lessons and improve their model selection procedure,
thus enabling fairer comparisons. Second, we only considered four OPE methods that are
commonly used in healthcare tasks. It could be beneficial to understand the pros and
cons of other OPE methods when incorporated into the model selection framework, e.g.,
approaches based on marginalized importance sampling (Liu et al., 2018; Zhang et al.,
2019; Uehara et al., 2020). Some of these techniques have been compared quantitatively in
concurrent work by Fu et al. (2021) on a continuous control benchmark suite, but none of
them outperformed FQE in terms of ranking quality. Third, we assumed the same validation
data is used to fit the auxiliary models and calculate OPE estimates. It is possible to use two
separate validation sets (one for fitting models, the other for applying OPE); we preferred
our current strategy as it leverages more data for both steps and empirically produced
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reasonable results, though this may violate the independence assumptions needed for the
theoretical guarantees of OPE (Jiang and Li, 2016). We also did not implement additional
“tricks” that could help improve OPE accuracy, e.g., truncated importance weights for
WIS (Ionides, 2008; Swaminathan and Joachims, 2015) or more sophisticated models for AM
(Torabi et al., 2018; Yu et al., 2020; Kidambi et al., 2020). Lastly, we generated datasets with
sufficient exploration and coverage over the entire state-action space, and trained all policies
using a vanilla RL algorithm (i.e., FQI) that does not address distribution shift. Recently
proposed algorithms that specifically account for distribution shift (Kidambi et al., 2020;
Yu et al., 2020; Kumar et al., 2020; Liu et al., 2020) require additional hyperparameters,
and we expect our framework to be useful for selecting these hyperparameters if the OPE
step also considers distribution shift (e.g., by restricting the state-conditional action space
to disallow rare actions). Despite these limitations, our empirical results suggest that using
OPE for model selection in offline RL is a promising solution.

In this paper, we outlined important practical considerations when using OPE for model
selection in offline RL. Our work serves as a guide for RL practitioners in healthcare and
other high-stakes domains when considering the model selection step, and can ultimately
lead to better policies on real-world datasets. We encourage researchers in RL for health
to build upon our lessons and report model selection techniques, in an effort to improve
reproducibility, enable fair comparisons, and advance the field.
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Amir-massoud Farahmand and Csaba Szepesvári. Model selection in reinforcement learning.
Machine learning, 85(3):299–332, 2011.

M Fard and Joelle Pineau. PAC-Bayesian model selection for reinforcement learning. Ad-
vances in Neural Information Processing Systems, 23:1624–1632, 2010.

Justin Fu, Mohammad Norouzi, Ofir Nachum, George Tucker, Alexander Novikov, Mengjiao
Yang, Michael R Zhang, Yutian Chen, Aviral Kumar, Cosmin Paduraru, et al. Bench-
marks for deep off-policy evaluation. In International Conference on Learning Represen-
tations, 2021.

Scott Fujimoto, Edoardo Conti, Mohammad Ghavamzadeh, and Joelle Pineau. Bench-
marking batch deep reinforcement learning algorithms. arXiv preprint arXiv:1910.01708,
2019a.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. In International Conference on Machine Learning, pages 2052–2062.
PMLR, 2019b.

Joseph Futoma, Michael C Hughes, and Finale Doshi-Velez. POPCORN: Partially observed
prediction constrained reinforcement learning. In International Conference on Artificial
Intelligence and Statistics, 2020a.

Joseph Futoma, Muhammad A Masood, and Finale Doshi-Velez. Identifying distinct, effec-
tive treatments for acute hypotension with SODA-RL: Safely optimized diverse accurate
reinforcement learning. AMIA Summits on Translational Science Proceedings, 2020:181,
2020b.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

Omer Gottesman, Fredrik Johansson, Joshua Meier, Jack Dent, Donghun Lee, Srivat-
san Srinivasan, Linying Zhang, Yi Ding, David Wihl, Xuefeng Peng, et al. Evaluat-
ing reinforcement learning algorithms in observational health settings. arXiv preprint
arXiv:1805.12298, 2018.

Josiah Hanna, Scott Niekum, and Peter Stone. Importance sampling policy evaluation with
an estimated behavior policy. In International Conference on Machine Learning, pages
2605–2613. PMLR, 2019.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David
Meger. Deep reinforcement learning that matters. In Proceedings of the AAAI Conference
on Artificial Intelligence, 2018.

Edward L Ionides. Truncated importance sampling. Journal of Computational and Graph-
ical Statistics, 17(2):295–311, 2008.

Alex Irpan, Kanishka Rao, Konstantinos Bousmalis, Chris Harris, Julian Ibarz, and Sergey
Levine. Off-policy evaluation via off-policy classification. In Advances in Neural Infor-
mation Processing Systems, 2019.

20

http://www.deeplearningbook.org


Model Selection for Offline RL: Practical Considerations for Healthcare

Nan Jiang and Lihong Li. Doubly robust off-policy value evaluation for reinforcement
learning. In International Conference on Machine Learning, pages 652–661. PMLR, 2016.

Nan Jiang, Alex Kulesza, Satinder Singh, and Richard Lewis. The dependence of effective
planning horizon on model accuracy. In Proceedings of the 2015 International Conference
on Autonomous Agents and Multiagent Systems, pages 1181–1189. Citeseer, 2015.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang,
Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Scalable
deep reinforcement learning for vision-based robotic manipulation. In Conference on
Robot Learning, pages 651–673, 2018.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims.
MOReL: Model-based offline reinforcement learning. In Advances in Neural Informa-
tion Processing Systems, volume 33, 2020.

Taylor W Killian, Haoran Zhang, Jayakumar Subramanian, Mehdi Fatemi, and Marzyeh
Ghassemi. An empirical study of representation learning for reinforcement learning in
healthcare. In Machine Learning for Health, pages 139–160. PMLR, 2020.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
International Conference on Learning Representations, 2015.

Matthieu Komorowski, Leo A Celi, Omar Badawi, Anthony C Gordon, and A Aldo Faisal.
The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in in-
tensive care. Nature Medicine, 24(11):1716, 2018.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-
policy Q-learning via bootstrapping error reduction. In Advances in Neural Information
Processing Systems, pages 11784–11794, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative Q-learning
for offline reinforcement learning. In Advances in Neural Information Processing Systems,
volume 33, 2020.

Ilja Kuzborskij, Claire Vernade, András György, and Csaba Szepesvári. Confident off-policy
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Appendix A. Pseudocode for FQI & FQE

Below we present the pseudocode for FQI (Alg. A.1) and FQE (Alg. A.2), using notation
we introduced in Section 2.

Algorithm A.1 Fitted Q Iteration
(Ernst et al., 2005; Riedmiller, 2005)

1: Input: dataset D,
function class F , max iteration H

2: Initialize Q̃0(si, ai) = 0 for all (si, ai) ∈ D
3: for h in 1 . . . H do
4: Compute target yi = ri + γmaxa′∈A Q̃h−1(s

′
i, a
′) ∀i

5: Build training set D̃h = {(si, ai), yi}Ni=1

6: Solve a supervised learning problem
Q̃h ← arg minf∈F

∑N
i=1(f(si, ai)− yi)2

7: end for
8: Output: π(s) = arg maxa∈A Q̃H(s, a)

Algorithm A.2 Fitted Q Evaluation
(Le et al., 2019; Voloshin et al., 2019)

1: Input: dataset D, policy to be evaluated π,
function class F , max iteration H

2: Initialize Q̃0(si, ai) = 0 for all (si, ai) ∈ D
3: for h in 1 . . . H do
4: Compute target yi = ri +γ

∑
a′∈A π(a′|s′i)Q̃h−1(s′i, a′) ∀i

5: Build training set D̃h = {(si, ai), yi}Ni=1

6: Solve a supervised learning problem
Q̃h ← arg minf∈F

∑N
i=1(f(si, ai)− yi)2

7: end for
8: Output: Q̃H

Appendix B. OPE Computational Requirements

As we have mentioned in Section 3.2, each OPE estimator depends on auxiliary models.
For example, WIS requires a model of the behavior policy π̂b, whereas AM requires the
transition/reward models p̂ and r̂. Here, we further discuss how these models can be
obtained from data, for RL problems with either a discrete or continuous state space. We
assume a discrete action space and leave continuous action spaces to future work.

Discrete state space. This corresponds to the tabular setting, where the “models” are
probability/value tables and can be obtained via maximum likelihood estimation (MLE)
using count-based averaging:

π̂b(a|s) =
count(s, a)

count(s)
p̂(s′|s, a) =

count(s, a, s′)

count(s, a)

r̂(s, a) =

∑N
i=1 ri1(si=s,ai=a)

count(s, a)
µ̂0(s) =

count(s1 = s)

m

where count(s, a) and count(s, a, s′) are the (marginal) counts of the state-action pair and
state-action-next-state transition in D respectively. These quantities can be found relatively
efficiently by looping through the dataset once and accumulating the respective counts.

Continuous state space. In this case, a state is represented as a feature vector x(s) ∈ Rd.
Thus, all of the above-mentioned models need to be approximated using some parameterized
functions (e.g., neural networks). These models (as shown in Table 3) are independent from
the main policy learning process; they can be treated as classification or regression tasks
and trained using standard supervised learning techniques (e.g., stochastic gradient descent
with early stopping on a validation split). Furthermore, each of these models may be used
for inference for multiple times given different inputs. We summarize the total number of
additional models and inference runs for each OPE in Table 4.
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Table 3: Details of auxiliary supervised models required by each OPE for problems with
continuous state spaces.

OPE Model Pattern Set Task Type Loss
{xi, yi}Ni=1

WIS π̂b(a|s) x(si) ai classification cross entropy

AM
∆̂s(s, a) 〈x(si), ai〉 x(s′i)− x(si) regression mean squared error
r̂(s, a) 〈x(si), ai〉 ri regression mean squared error

FQE Q̃h(s, a) 〈x(si), ai〉 ri + max
a′∈A

Q̃h−1(s
′
i, a
′) regression mean squared error

Table 4: Summary of computational requirements of OPE used for model selection for K
candidate policies. We assume the dataset consists of m episodes and N transitions, and
H is the length of the evaluation horizon. For WDR we only list additional computation
that are not already computed in other OPE estimators.

OPE
Fitting Inference

Runs Samples Runs Samples

WIS 1 N 1 N
AM 2 N 2K mH
FQE KH N KH; K N ; m

WDR-AM — — 2|A|HHK N
WDR-FQE — — K N

Appendix C. Sepsis Simulator - Details

We use the sepsis simulator adapted from Oberst and Sontag (2019) and Futoma et al.
(2020a), which is crudely modeled after the physiology of patients with sepsis. Our experi-
ments are based on an implementation publicly available at https://github.com/clinicalml/
gumbel-max-scm/tree/sim-v2/sepsisSimDiabetes.

• Action space. There are 8 actions based on combinations of 3 binary treatments:
antibiotics, vasopressors, and mechanical ventilation, where each treatment can affect
certain vital signs and may raise/lower their values with pre-specified probabilities.

• State space. The underlying patient state consists of 5 discrete variables: a binary
indicator for diabetes status, and 4 ordinal-valued vital signs (heart rate, blood pres-
sure, oxygen concentration, glucose). The previously administered treatments are also
encoded in the state as 3 additional binary variables. See Table 5 for more details.
We consider two state representations: a discrete state space with |S| = 1, 440, as well
as a feature vector x(s) ∈ {0, 1}21 that uses a one-hot encoding for each underlying
variable. We separately added two absorbing states to represent discharge and death.

• Initial states distribution. The diabetes indicator is set to 1 w.p. 0.2. To make
the problem easier, the MDP can start from any non-terminating state (including
those with treatments enabled) with equal probability (conditioned on the diabetes
indicator value), for a total of 303× 2 = 606 initial states.
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• Transition dynamics. The treatments (either added or withdrawn) affect different
state variables and are applied sequentially as detailed in Table 6.

• Rewards & termination condition. A patient is discharged only when all vitals
are normal and all treatments have been stopped; death occurs if 3 or more vitals are
abnormal. Rewards are sparse and only assigned at the end of each episode (when
transitioning from a terminating state to one of the two absorbing states), with +1
for survival and −1 for death, after which the system transitions into the respective
absorbing state and obtains 0 reward afterwards.

Table 5: Details on state variables.

Variable Name Levels (numeric / text)

hr Heart Rate {0,1,2} {L,N,H}
sbp Systolic Blood Pressure {0,1,2} {L,N,H}
o2 Percent Oxygen {0,1} {L,N}
glu Glucose {0,1,2,3,4} {LL,L,N,H,HH}
abx Antibiotics {0,1} {off,on}
vaso Vasopressors {0,1} {off,on}
vent Mechanical Ventilation {0,1} {off,on}
diab Diabetes Indicator {0,1} {no,yes}

Table 6: Details on transition dynamics.

Step Variable Current New Change Effect

1 abx
– on –

hr
sbp

H → N w.p. 0.5
H → N w.p. 0.5

on off withdrawn
hr

sbp
N → H w.p. 0.1
N → H w.p. 0.5

2 vent
– on – o2 L → N w.p. 0.7
on off withdrawn o2 N → L w.p. 0.1

3 vaso

– on –
sbp

L → N w.p. 0.7 (non-diabetic)
N → H w.p. 0.7 (non-diabetic)
L → N w.p. 0.5 (diabetic)
L → H w.p. 0.4 (diabetic)
N → H w.p. 0.9 (diabetic)

glu
LL → L, L → N, N → H,
H → HH w.p. 0.5 (diabetic)

on off withdrawn sbp

N → L w.p. 0.1 (non-diabetic)
H → N w.p. 0.1 (non-diabetic)
N → L w.p. 0.05 (diabetic)
H → N w.p. 0.05 (diabetic)

4
5
6
7

hr
sbp
o2
glu

fluctuate

vitals spontaneously fluctuate when not affected
by treatment (either enabled or withdrawn)
• the level fluctuates ±1 w.p. 0.1, except:
• glucose fluctuates ±1 w.p. 0.3 (diabetic)
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Appendix D. Additional Experimental Results

D.1. Model Selection using FQI Values & TD Errors

Following Section 5.1, we consider two additional metrics to be used as a proxies of validation
performance.

• FQI values. This is based on the predicted values from the Q-network learned by FQI.
It is in a way similar to “training performance” in the supervised learning setting.
Similar to all OPE scores, we compute FQI score with respect to the empirical initial
state distribution (from the validation set):

v̂FQI(π) =
1

m

m∑
j=1

V̂ π
FQI(s

(j)
1 ), where V̂ π

FQI(s) =
∑
a∈A

π(a|s)Q̂πFQI(s, a).

• RMS-TDE, i.e., root-mean-squared temporal difference error (Dann et al., 2014), is
the objective function (i.e., “loss function”) used in temporal difference learning algo-
rithms such as FQI (more precisely, the loss function is MS-TDE without the square
root). This is commonly calculated using the empirical distribution of transitions
from the validation set.

` =
√
E(si,ai,ri,s′i)∼D[δ2i ] ,

where δi =
[
ri + γ

∑
a′ π(a′|s′i)Q̂(s′i, a

′)
]
− Q̂(si, ai) defines the temporal difference

error of a transition tuple, and Q̂ is the same Q̂πFQI from FQI training.

We evaluate how well FQI values and RMS-TDE can serve as “validation scores” for model
selection by measuring the ranking quality and regret (Figure 6). We observe these two
“validation scores” clearly underperforms the OPE methods considered in the main paper,
achieving Spearman’s rank correlation |ρ| < 0.3 with very little trend in the scatter plots,
and high regret even when considering the top-5/top-10 set. This suggests that FQI values
and RMS-TDE are not effective metrics for model selection in offline RL, corroborating the
findings of Irpan et al. (2019) and Paine et al. (2020).
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Figure 6: Left – Scatter plots comparing true policy value with FQI values and RMS-TDE.
All values are clipped to the range of possible returns [−1, 1] for clarity of visualization.
Right – top-n regret in model selection for FQI and RMS-TDE.
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D.2. Sensitivity Analyses for Early Stopping

In this section, we focus on the model selection problem of early stopping, i.e., identifying
the best number of training iterations in FQI. This allows us to consider both tabular and
function approximation settings. The candidate policy set is made up of all the polices
derived from Q-functions along the training path of an FQI run. We focus our experiments
on WIS/AM/FQE, because WDR resulted in large variances and heavily skews the plots.

D.2.1. Sensitivity to OPE Hyperparameters

Since each OPE method has its own auxiliary hyperparameters, it is important to under-
stand how they may affect OPE validation ranking quality, especially as there is no effective
way of selecting them. In this experiment, we focus on the hyperparameters that must be
set a priori, namely: the policy softening parameter ε and the evaluation horizon H for
AM/FQE. We vary these hyperparameters in the reasonable ranges and measure the cor-
responding regret following model selection (similar to Section 5.2.1). For continuous state
space models, even though the auxiliary models contain hyperparameters themselves (e.g.,
the neural architecture), these can be tuned via standard model selection within each aux-
iliary supervised learning task; for consistency, we kept these hyperparameters the same
throughout. Note that in the tabular setting, AM can be computed analytically (instead of
via Monte-Carlo rollouts) and does not have any hyperparameters, and is therefore omitted
from this experiment.
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Figure 7: Regret comparisons for model selection with different OPE hyperparameters.

Results and Discussion. For the tabular setting (Figure 7 left), both WIS and FQE are
relatively robust to hyperparameter values (ε and H, respectively) within the reasonable
ranges, maintaining a low regret of < 0.1. For the continuous state setting (Figure 7 right),
although AM appears the most robust to different H values, the regret it obtains is higher
than the other two OPE and does not decrease as H increases. WIS obtains the lowest
regret at a low ε, where using ε values that are too large (π̃ is too far from π) led to regret
with slightly larger variance. FQE achieves the lowest regret at an intermediate value of
H = 20. This could be due to a form of overfitting within auxiliary models that could cause
longer evaluation horizons to have poorer estimates when approximation errors are present
(Jiang et al., 2015).
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D.2.2. Size of Validation Set

In this experiment, we vary the amount of validation data used for OPE, similar to Sec-
tion 5.2.2. The training set and training procedures were kept the same to generate the
same candidate set for each run, so the only difference is the validation sample size.
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Figure 8: Regret comparison for OPE using validation data with varying sample sizes and
varying behaviors. A larger validation set and more exploratory behavior generally results
in the lowest regret.

Results and Discussion. For settings with both discrete and continuous states (Figure 8,
left column), FQE consistently benefits from larger validation sizes, achieving lower regret.
The trend is less apparent for WIS (which generally results in noisier policy value estimates)
and for AM (due to model misspecification, especially with function approximation).

D.2.3. Type of Behavior Policy and Extent of Exploration

The behavior policies used to collect validation data can affect which part of the state-
action space receives sufficient exploration and the resultant OPE model selection perfor-
mance. Similar to Section 5.2.3, we consider the random behavior policy, the near-optimal
ε-greedy behavior policy, and a mixture of both to create the validation sets each containing
m = 10, 000 episodes. The training set and training procedures were kept the same to gen-
erate the same candidate set for each run, so that the only difference comes from different
validation data.
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Results and Discussion. The random behavior policy produces more exploratory data
compared to ε-greedy, leading to slightly lower regret in general (Figure 8, right column).
Surprisingly, even when a mixture of multiple behavior policies is used, WIS is not heavily
affected by this policy misspecification (though in the tabular setting, the mixed behavior
data produces slightly higher median regret). FQE and AM remain relatively stable across
different behavior settings and lead to the lowest regret in most cases with smaller variance.

Appendix E. Additional Related Work

The quality of policies learned by RL methods can depend heavily on hyperparameter
choices, especially when combined with deep learning (Henderson et al., 2018). In supervised
domains, model selection and hyperparameter tuning has been an essential tool to improve
model performance in numerous application settings (Bergstra and Bengio, 2012; Li et al.,
2017; Snoek et al., 2012). Yet model selection for offline RL has received relatively less
attention, especially in empirical analyses on real-world datasets. Closely related to our
setup, Paine et al. (2020) demonstrated that FQE is a useful strategy for hyperparameter
selection in offline RL on several benchmark control tasks; Fu et al. (2021) published a
benchmark suite for comparing OPE methods on continuous control tasks with Spearman’s
correlation as one of evaluation metrics, and also found FQE to be the most effective; Mandel
et al. (2014) combined importance sampling with a “temporal” cross-validation technique
and applied their approach on an educational game problem. In contrast to these works, we
compare multiple OPE estimators both qualitatively and quantitatively to address questions
of practical importance for healthcare settings. There are several other notable works in this
area, for which we provide a brief overview below. Fard and Pineau (2010) established PAC-
Baysian bounds for offline RL model selection but assumed explicit prior information about
environment dynamics or value functions. Farahmand and Szepesvári (2011) proposed
BErMin, which focuses exclusively on Bellman error minimization rather than policy value
maximization; however, due to overestimation of value functions during training, these
errors/losses are not reflective of the true policy performance (corroborated by our results
in Appendix D.1 and by Irpan et al. (2019); Paine et al. (2020) who showed the poor ranking
quality of the loss function). Irpan et al. (2019) developed off-policy classification to rank
policies, but their approach is limited to goal-directed domains with a sparse binary reward.
Lee et al. (2020) proposed a gradient-based hyperparameter optimization procedure but is
limited to a single hyperparameter that controls the extent of KL-regularization. Kuzborskij
et al. (2021) considered a model selection pipeline similar to ours for contextual bandits
and developed a new scoring function, whereas we focus on the sequential setting in offline
RL and practical challenges in applying existing OPE methods as scoring functions. Xie
and Jiang (2021) studies the problem from a theoretical perspective and proposed BVFT,
reducing model selection to pairwise comparisons between candidate policies and provided
finite-sample guarantees; in contrast, we consider the more practical aspects of how model
selection can (and should) be carried out when applying existing RL/OPE approaches on
observational dataset.
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Appendix F. Additional Details of the Two-Stage Selection Procedure

In this appendix, we offer some theoretical insight for the expected behavior of the two-stage
selection procedure. We first present a general result on the effect of random ranking.

Theorem 1. Suppose we have a list of C values [v[1], · · · , v[C]] listed in decreasing order.
Given a random permutation [v1, · · · , vC ] over these C values, the probability that the first
A positions contain at least one of the B largest values is:

Pr(max{v1, · · · , vA} ≥ v[B]) =

{
1 if A+B > C

1− (C−A)!(C−B)!
C!(C−A−B)! if A+B ≤ C

Proof. We consider the following two cases:

• If A + B > C, then the B largest values do not fit in the C − A positions because
B > C −A, and thus the desired probability is 1.

• If A + B ≤ C, then we can consider the complement, i.e., the probability such that
none of the B largest values are in the first A positions. This can be obtained by
counting the possibilities of arranging B objects into C positions (for the sample
space) and C −A positions (for the event space, such that none of the B objects fall

into the first A positions), given by (C−A)···(C−A−B+1)
C···(C−B+1) = (C−A)!(C−B)!

C!(C−A−B)! . The desired

probability is thus 1− (C−A)!(C−B)!
C!(C−A−B)! .

Remark. Below we show example values of A, B, C, and the corresponding probability.

C A B Probability

1 1 1 1
K α 1 α/K
K 1 β β/K

Remark. We can view this probability as a cdf, with the corresponding pdf being the
probability that the maximum value of the first A positions being exactly the B-th largest
value v[B] (assuming all values are distinct, wlog). When A = 1, we can show that the pdf
is 1/C, regardless of the value of B.

Pr(v1 = v[B])

= Pr(v1 ≥ v[B])− Pr(v1 ≥ v[B−1])

=
(

1− (C−1)!(C−(B+1))!
C!(C−1−(B+1))!

)
−
(

1− (C−1)!(C−B)!
C!(C−1−B)!

)
= (C−1)!(C−B+1)!

C!(C−B)! − (C−1)!(C−B)!
C!(C−B−1))!

= C−B+1
C − C−B

C

= 1/C

This matches with our intuition because a randomly selected value from a list of C values
should have 1/C probability of being any one of the C values. While this seems trivial,
the general formula we derived in Theorem 1 allows us to compute the probability for any
values of A and B.
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F.1. Performance of Two-Stage Selection

Suppose that a random ranking over candidate policies is used in the first-stage. We can
use Theorem 1 to calculate the probability that a good policy is retained in the pruned
subset, by setting C = K the number of candidate policies, and A = α the initial subset
size. Here, B controls the definition of a “good” policy – where setting B = β means a
“good” policy is one of the top β policies according to the ground-truth policy values – and
this corresponds to the maximum allowable regret.

In Figure 9 (left), we plot this probability against initial subset size α, for different β
values. At β = 1, the probability of achieving zero regret increases linearly as the initial
subset size α grows. However, when a larger level of regret is allowed (larger β values), the
probability is high even for small α values. This suggests that, for example, pruning the
candidate set by half has a high chance of retaining a good policy even if the first-stage
OPE has random performance. Since OPE estimators are expected to perform better than
random, the above probability provides the lower bound; a (trivial) upper bound can be
obtained from an optimal ranking that has probability 1 for any values of A and B, including
A = B = 1.
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Figure 9: Comparison of cumulative distribution functions of a random OPE, WIS, and
FQE, relative to initial subset size α, for the 96 candidate policies on the sepsis simulator
task for different β values (which controls the level of allowable regret).
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To compare the performance of WIS and FQE against the random lower bound, we
computed empirical cdfs from the 10 replication runs for each OPE method, using the main
experiment in Section 5.1. In Figure 9 (right), we visualize these cdfs on a set of axes, one
for each β value. We see that in general, FQE has a higher chance of retaining a “good”
policy than WIS, if used for the first-stage pruning, for all α and β values. Nonetheless,
both WIS and FQE have cdfs larger than the random lower bound, suggesting that both
OPE estimators indeed perform better than random.

F.2. Further Analyses & Discussion

The analyses above focused on the sole effect of the first-stage pruning, and thus assumed
that the second OPE in the two-stage procedure produces a perfect ranking. One could
estimate the overall performance by taking the product of probabilities of the two stages,
assuming that rankings from the two stages are independent. However, the independence
assumption does not hold in reality, because all OPE validation scores are generated from
the same validation data. Furthermore, the quality of ranking from an OPE is challenging
to quantify as it depends on many factors: the OPE itself, the data, the variance of each
value estimate (this can differ per candidate policy), etc. These analyses are outside the
scope of this paper and left for future work.
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