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Abstract

Molecular mechanisms are important to inform targeted intervention and are often en-
coded in gene sets or pathways. Existing machine learning approaches often face chal-
lenges in simultaneously reducing the high dimensionality and learning effective features
that are discriminative in predicting the disease types with the usual presence of confound-
ing variables. We aim to improve accuracy and interpretability of prediction models by
introducing Supervised Confounding Aware Non-negative Matrix Factorization for Poly-
genic Risk Modeling (ScanMap) for genetic studies. ScanMap selects informative groups of
genes that embody multiple interacting molecular functions by using a supervised model
that integrates both groups of genes and confounding variables in predicting disease type
and status. The learned groups of genes reflect interacting molecular mechanisms, which
are suitable features for polygenic risk modeling. These learned features are then used in
training a softmax classifier for disease type and status prediction. We evaluated ScanMap
against multiple state-of-the-art unsupervised and supervised matrix factorization models
using large scale NGS datasets. ScanMap outperformed all comparison models significantly
(p < 0.05). Feature analysis was performed to illuminate the insights and benefits of gene
groups learned by ScanMap in disease risk prediction.

1. Introduction

Recent advances in machine learning have opened avenues towards more effective mining
and modeling of large scale genetic and clinical data to facilitate translational research. Tra-
ditional machine learning in genetics usually treats genes or variants as features but multiple
genes often form pathways and act together to achieve molecular or biological functions. In-
tuitively, genetic variants are standard to extract and have robust statistical properties, but
are less informative and interpretable as they often do not directly speak about molecular
mechanisms, at least not alone. In contrast, the genetic pathways are more expressive and
informative, but their curation and selection are certainly non-trivial. In addition, the cur-
rent genetic pathway databases are still actively evolving with the increasingly accelerated
growth of genetic discoveries, and are far from being complete. Thus we need automated
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tools to identify functionally related genes in order to expand our knowledge on molecu-
lar mechanisms. To this end, dimensionality reduction tools are usually explored, among
which non-negative matrix factorization (NMF) has achieved much success and is a frequent
choice due to the added interpretation advantage from the non-negativity constraints when
working on genetic count data (e.g, (Alexandrov et al., 2013)).

Most of the dimensionality reduction methods, including NMF, belong to the unsu-
pervised learning category as no label information is used. In many real world genetic
applications, dimensionality reduction is just an intermediate step toward the final goals,
such as disease type or status classification and survival or time-to-event regression. Sepa-
rating the dimensionality reduction and model learning into two steps may not be optimal
for the classification or regression goals as we have no guarantee that the learned features
in reduced dimensions will be discriminative regarding the tasks at hand. To tackle this
problem, supervised dimensionality reduction methods are needed to use the cancer labels
to focus the attention on more discriminative genes and mutations.

In this work, we propose a new framework named ScanMap: Supervised Confounding
Aware Non-negative Matrix Factorization for Polygenic Risk Modeling, to jointly model the
dimensionality reduction problem and confounding aware supervised polygenic risk mod-
eling problem. ScanMap relies on the intuition that the mechanisms by which a clinically
meaningful group of disrupted genes act together are usually effective in characterizing dis-
ease subtypes (e.g., cancer types (Bailey et al., 2018)). Our source code is available at
https://github.com/yuanluo/scanmap. Our contributions are as follows:

• To the best of our knowledge, ScanMap is the first study of simultaneously reducing
the dimensions of genetic variants and building a supervised polygenic risk model that
is aware of confounding variables.

• Applications on Next Generation Sequencing (NGS) datasets on multiple cancer types
show significant performance improvements by ScanMap over multiple state-of-the-art
baselines.

• ScanMap has a GPU implementation and runs fast. Feature analysis shows insights
from ScanMap on identifying interacting molecular mechanisms of disease genetic
risks.

Generalizable Insights about Machine Learning in the Context of Healthcare

Unlike previous supervised NMF methods, ScanMap incorporates confounders via a super-
vised learning step. This robust mechanism for dimensionality reduction additionally has
generalizable utility. While individual genes have been studied, our understanding of ge-
netic pathways in oncogenesis is limited. ScanMap allows for deeper exploration of these
pathways. Although only studied on the four most prevalent cancers in the TCGA database
in this paper, being able to expand understanding of molecular mechanisms could be useful
in other cancers as well as a host of other genetic conditions.

2. Related Work

Nonnegative Matrix Factorization (NMF) refers to the set of problems on approximating
a nonnegative matrix as the product of lower rank nonnegative matrices. Since the intro-
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duction in (Lee and Seung, 1999), people have been working on NMF from various aspects.
(Ding et al., 2005) showed the equivalence between NMF and K-means/spectral clustering.
(Inderjit Dhillon, 2005) extended NMF to the case when the matrix approximation loss is
measured by Bregman divergence, which is a general loss function that has both Frobenius
norm and KL divergence as its special cases. On the solution procedure aspect, (Berry
et al., 2007) reviewed the general algorithms, and categorized three classes of algorithms.
The first class uses multiplicative updates (Lee and Seung, 1999; Ding et al., 2005), the
second class uses gradient based methods such as (Pauca et al., 2006; Lin, 2007; Kim and
Park, 2011), the third class uses the alternating least squares (ALS) algorithm (Paatero,
1999; Langville et al., 2014). More recently, (Sun and Fevotte, 2014) adopted the alternat-
ing direction method of multipliers (ADMM) to solve the NMF with beta-divergence. As
NMF formulation gets more complex, new optimization algorithms often need to be devised
from scratch. In this work, we adopt ADAM (Kingma and Ba, 2015), a generic and efficient
optimizer, and the autograd utility from PyTorch platform to automate the optimization
of ScanMap.

Besides basic NMF methods, there are many variants of constrained NMF that form
three groups. The first group enforced constraints into basic NMF to obtain certain de-
sirable charateristics, such as sparsity (Morup et al., 2008) and orthogonality (Ding et al.,
2006; Yoo and Choi, 2010). The second group named structured NMF modified the stan-
dard formulation of NMF, including weighted NMF (Kim and Choi, 2009), convolutive
NMF (O’grady and Pearlmutter, 2006) and nonnegative matrix trifactorization (Yoo and
Choi, 2010). The third group is the generalized NMF, including semi-NMF (Ding et al.,
2010), matrix-set factorization (Li and Zhang, 2007) and kernel NMF (Zhang et al., 2006).
For details, refer to the survey paper (Wang and Zhang, 2013). In this work, we adopt
multiple elements in the first group of constrained NMF.

NMF has been an effective unsupervised dimensionality reduction method using sin-
gle feature modality for data structure exploration (see review (Wang and Zhang, 2013)).
NMF has been applied extensively in the biomedical domain: to cluster similar patients
(e.g., (Hofree et al., 2013)) and sample cell lines (e.g., (Müller et al., 2008)). Recently,
NMF has been applied to study differential cancer risks of genetic mutations with promis-
ing successes (e.g., (Alexandrov et al., 2013; Zeng et al., 2019)).

Unsupervised NMF methods cannot guarantee that the prediction ability is retained
because the label information is not used to guide the factorization. To tackle this problem,
several supervised NMF methods were proposed. They can be classified into two categories.
The first category including (Hyekyoung Lee, 2010; Liping Jing and Ng, 2012) uses a Frobe-
nius loss for supervision and is suitable for the regression problem. The second category
including (MacMillan and Wilson, 2017; Bisot et al., 2017) uses the cross-entropy loss for
supervision and is suitable for the classification problem. (MacMillan and Wilson, 2017)
introduced the weakly topic supervised non-negative matrix factorization method (wsNMF)
to enable the use of labeled example documents to promote the discovery of meaningful se-
mantic structures of a corpus. (Bisot et al., 2017) introduced the non-negative formulation
for task-driven dictionary learning to combine NMF and classification into a joint opti-
mization problem, and called their method TNMF. None of these methods simultaneously
consider the confounding variables in the supervised dimensionality reduction problem. In-
stead they assume that the NMF is performed on all raw features. However, in genetics,
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confounding variables such as age, gender, and race are often of distinct nature compared
with raw features (genetic mutations in this case), and often have much lower dimensions
than raw features. Thus we need to separate confounding variables from NMF input but
consider them in the supervised modeling, which is a need unmet by existing supervised
NMF methods.

Our proposed framework ScanMap belongs to the second category of supervised NMF
models, in which we use the cross entropy loss as classification constraint to explicitly guar-
antee the predictive utility of the learned gene groups. A distinct feature of ScanMap,
compared to previous supervised NMF methods, is that ScanMap is confounding aware in
that we merge confounding variables with NMF-derived features in the supervised learning
component. Another feature is the orthogonality constraints applied on NMF-derived fea-
tures. This is motivated by the fact in the field of genetics that we often need to assess the
effect sizes of the features (predictors), and decoupling correlations among features is often
desirable in related statistic analysis.

3. Methods

We develop a supervised feature learning framework in order to build machine learning
models that are both more accurate and more interpretable for genetics. The framework
uses supervised learning for polygenic risk modeling to guide the Non-negative Matrix
Factorization and is capable of considering a variety of confounding variables ranging from
subjects’ demographics to comorbidities. We name our model Supervised Confounding
Aware Non-negativeMatrix Factorization for Polygenic Risk Modeling, which is abbreviated
as ScanMap.

3.1. ScanMap workflow

We first outline the workflow of ScanMap in Fig. 1, referring to Table 1 for symbols used
throughout this paper. This study considers both genetic pathway features and genetic
variant features. For genetic variants, we first annotate the variants and then keep the
deleterious variants. The variants are of high dimensionality, and we choose to aggregate
their counts according to the affected genes to avoid impractically large matrices. Thus we
aggregate genetic variant count at gene level and abuse terminology to use “gene” to really
mean “variants in the gene” in the following text. We filter redundant pathways and those
that are too small. We then devise an occurrence counting scheme to construct the subject
× pathway and the subject × gene matrices. We further perform supervised constrained
NMF that is capable of considering a variety of confounding variables. Finally we combine
the learned subject factor matrix together with confounding variables for disease type and
status classification. We next explain each step in detail.

3.2. Annotation-based variant filtering and deleterious variant selection

For annotation-based variant filtering, we use the ANNOVAR toolkit (Wang et al., 2010) to
comprehensively annotate called variants. ANNOVAR integrates a wide array of informa-
tion regarding genetic variants, including their hosting genes annotated with several gene
models including RefSeq, UCSC Known Gene, Ensembl Gene; the variant function and its
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Table 1: Common notations used throughout the paper. When describing the model for-
mulation that is applicable to both pathway count matrix and gene count matrix,
we drop the g and p in the subscripts and superscripts to avoid clutter.

Notation Definition

X(g) Subject × gene matrix

X(p) Subject × pathway matrix
F Subject factor matrix

G(g) Gene factor matrix

G(p) Pathway factor matrix
Fr rth column of F
n Number of subjects
mg Number of genes
mp Number of pathways
k Number of latent groups
◦ Outer product

Subisomorphism filtering

Variant annotation Variants filtering and aggregation

Genetic pathways

Disease type or status

Genetic variants

Confounding variables

Confounding Aware Supervised NMF

Softmax classification

Co-occurrence counting

Subject-pathway matrix 
or subject-gene matrix

Figure 1: Workflow for the framework of Supervised Confounding Aware Non-negative Ma-
trix Factorization for Polygenic Risk Modeling (ScanMap). Square boxes are data,
round corner boxes are steps. The framework takes Variant Call Format (VCF)
files as input for genetic variants. A row in a VCF file specify a particular variant
(e.g., Single Nucleotide Polymorphism or insertion/deletion), its chromosomal lo-
cation, and whether the variant occurs in 0, 1 or both strands of the chromosome,
among other characteristics.
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putative likelihood of pathogenicity based on scores including PolyPhen2, SIFT, CADD,
and other meta predictors; variant’s minor allele frequency and its phenotype associations
evidenced by ClinVar and HGMD.

To address issues of reference mis-annotation, we resort to the recently released Exome
Aggregation Consortium (ExAC) exome dataset (Lek et al., 2016), which aims to aggregate
exome sequencing data and derive population level variant frequencies from a wide range of
large-scale sequencing projects. For variants whose allele frequencies are observed to be over
90% among the 60,706 individuals aggregated by ExAC, we filter them out as they are less
likely to be culprits in disease onset and development. There have been extensive debates in
the genetics field on whether a disease is only due to rare variants or rare + common variants
(see (Gibson, 2012)). To be inclusive, we included rare and modestly common variants
(using ExAC reported statistics). We further focus on deleterious variants, which include
frame-shift insertion, frame-shift deletions, nonsense variants, nonsynonymous variants and
splice site alterations. Focusing on deleterious variants allows one to select likely truly
harmful variants instead of including too many variants such as those that are synonymous
(i.e. do not alter the resultant amino acids), and is an important step in genetic analysis.
Following the common practice in machine learning to exclude extremely rare features,
we exclude the genes that have very rare variants (< 1% subjects in the training data of
respective experiments).

3.3. Pathway Collecting and Pruning

In this work, we also evaluate comparison models using the pathway directly as features
as an approximation of the disruptions to molecular functions. We use the REACTOME
database (Croft et al., 2010) to obtain a comprehensive collection of known and curated
genetic pathways in a best effort attempt, while acknowleding that our current compiled
knowledge about pathways is not complete. REACTOME is a database of biological path-
ways curated by expert biologists with evidence from literature. For this work, we primarily
focus on human pathways. Sifting through the pathways, we found that some smaller path-
ways are part of larger pathways. As (Holmans, 2010) pointed out, small pathways often
exhibit large single-gene or single-SNP effects, and lead to false positive associations with
disease phenotypes. Thus we choose to keep only the larger pathways when encountering
such pairs. The part-of relation between pathways is usually formulated as the problem
of graph subisomorphism. Formally, let G1 = (N1, E1, l1) and G2 = (N2, E2, l2) be two
graphs, where N1 and N2 are the sets of nodes, E1 and E2 are the sets of edges and l1 and
l2 are the labeling functions for nodes and edges. G1 is subisomorphic to G2 if the following
conditions are satisfied:

• Node agreement - There exists an injective mapping M from each node n1 in G1 to
a counterpart M(n1) in G2 that shares the same label

l1(n1) = l2(M(n1)) (1)

• Edge agreement - Under the condition of node agreement, for a mapping M, each
edge (n1, n2) in G1 should also have a corresponding edge in (M(n1),M(n2)) in G2
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Algorithm 1 Detecting subisomorphism in a set of pathways. Adj(·) denotes adjacency
matrix of a pathway (graph). NPs(Pb) denotes node subsetting of a graph, only retaining
the nodes (and associated edges) in Pb if they are also in Ps.

Input: P - set of pathways
Output: S - list of discovered subisomorphisms in P
1: Let S = []
2: stable sort P in ascending order of #nodes
3: for i = 1 to length(P) −1 do
4: for j = i+ 1 to length(P) do
5: Ps = P[i]; Pb = P[j]
6: if nodes(Ps) ⊂ nodes(Pb) then
7: if Adj(Ps) == Adj(NPs(Pb)) then
8: Append (Ps, Pb) to S
9: end if

10: end if
11: end for
12: end for
13: return S

such that

l1(n1, n2) = l2(M(n1),M(n2)) (2)

In our case, the definition that one graph (pathway) is subisomorphic to another graph
simply means that the latter contains the former. That is, M is the identity mapping and
l1 and l2 agree on the common nodes and edges between the two graphs. This greatly
simplifies subisomorphism comparison between two pathways. Moreover, we have used
heuristics to prune unnecessary subisomorphism comparisons, for example, pathway Ps

can only be subisomorphic to pathway Pb if #nodes(Ps) < #nodes(Pb) (size heuristic) and
nodes(Ps) ⊂ nodes(Pb) (using faster pre-check of set containment), as shown in Algorithm 1.

3.4. Constructing the Matrices

We build the subject × pathway matrix X(p) and the subject × gene matrix X(g) that are
the input in Fig. 2. The matrix entry records the occurrence count of variants in a gene or
in a pathway. In Fig. 2, the factor matrix F is the subject × subject group matrix, G the
gene group × gene matrix.

For the subject × gene matrix X(g), the entry X
(g)
i,k denotes the count of variants hitting

gene k in subject i and is defined as

X
(g)
i,k =

∑
v∈Vi and v∈Spank

c(v) (3)

where Vi is the set of variants hitting subject i, Spank is the basepair position spans of gene
k, and c(v) is the allele count of variant v.
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Figure 2: ScanMap’s matrix factorization scheme for using confounding aware supervised
learning to guide the gene group discovery. Analogous mechanism works for path-
way count matrix as well.

⊕
denotes concatenation of two matrices horizontally.

C is the matrix of confounding variables. W(1) and W(0) are classification weights
and bias. Other symbols are defined in Table 1.

For the subject × pathway matrix X(p), the entry X
(p)
i,j denotes the count of variants

hitting pathway j in subject i and is defined as

X
(p)
i,j =

∑
k∈Pj

X
(g)
i,k (4)

where Pj is the set of genes in pathway j and X
(g)
i,k is defined in equation 3. There are

certainly alternative ways to define the gene and pathway occurrence counts, but we observe
that the definitions in equations 3 and 4 work well in our experiments.

3.5. Factorization in ScanMap

In this section, the formulation applies to both pathway count matrix and gene count
matrix, hence we drop the g and p in the subscripts and superscripts to aovid clutter. Let
k denote the number of latent groups as in Fig. 2. We combine each mode’s vectors into
corresponding factor matrices as in

F = [F1 | ... | Fr | ... | Fk] ∈ Rn×k

G = [G1 | ... | Gr | ... | Gk] ∈ Rm×k (5)

We define the outer product of the rth(1 ≤ r ≤ k) vectors from matrices F,G as the
following rank-one matrix

M = Fr ◦Gr (6)

where the entries are Mi,j = Fi,rGj,r.
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The matrix factorization approximates the original matrix X as the sum of a series of
rank-one matrices and is expressed as

X ≈
k∑

r=1

Fr ◦Gr = FG (7)

Non-negativity constraints are typically enforced for interpretation advantages. To serve
the modeling considerations in this paper, we further constrain the factorization as

min
F,G
‖X− FG‖2F + λ1φ(F)

s.t. F ≥ 0,G ≥ 0

G ∈ {0} ∪ [γG,+∞)m×k (8)

where,

φ(F) =
∥∥∥I− k · FTF/

∑
FTF

∥∥∥2
F

(9)

Intuitively speaking, φ(F) is the orthogonality constraints on the subject factor matrix F,
which will be used as the feature matrix in the downstream classification step. This is
motivated by the need in the field of genetics that we often need to assess the effect sizes
of the features (predictors), and decoupling correlations among features is often desirable.
Note that equation 9 is intended to be scale-free, in that we only ask for vectors to be
orthogonal but not for them to have a norm of 1. On the other hand, we add sparsity
constraints on the pathway or gene factor matrices (G) to aid the interpretation of the
learned composed high-order features, which aids clinical interpretation.

3.6. Classification for ScanMap

In clinical and genetic applications, there are usually confounding variables whose effects
need to be explicitly assessed together with the features of interest to avoid biased model
interpretation. These confounding variables typically include at least gender, race, and
age, and are explicitly accounted for in the ScanMap classification step. Let C be the
confounding variable matrix, and W(1) and W(0) be classification weights and bias. We
then concatenate the confounding matrix C and the learned feature matrix F and feed them
into a softmax classifier

Z = softmax(W(1) [C | F] + W(0)) (10)

The loss function is defined as the cross-entropy error over all subjects in all classes as in

L = −
∑
d∈YD

F∑
f=1

Ydf ln Zdf (11)

where YD is the training set of subjects that have labels and F is the dimension of the
output labels, which is equal to the number of classes. Y is the label indicator matrix.
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Table 2: Statistics of TCGA experiment data. The table includes the distribution of the
four most prevalent cancer types: breast cancer, colorectal cancer, lung cancer and
prostate cancer. The dataset is split into a training set, a validation set and a test
set according to a 6:2:2 ratio.

Cancer Total Train Validation Test

Breast 959 575 192 192
Colorectal 728 437 146 145
Lung 440 264 88 88
Prostate 418 251 83 84

To serve the modeling considerations in this paper, we further constrain the factorization
as

min
F,G,W(0),W(1)

‖X− FG‖2F + λ1φ(F) + λ2L

s.t. F ≥ 0,G ≥ 0

G ∈ {0} ∪ [γG,+∞)m×k (12)

where L is defined in equation 11 and φ(F) is defined as equation 9.
We base the ScanMap implementation on PyTorch, and design it to entirely run on

GPU. We train ScanMap for a maximum of 4000 iterations using Adam (Kingma and Ba,
2015) and stop training if the validation loss does not decrease for 10 consecutive epochs.
Parameters λ1, λ2 are tuned on validation dataset. ScanMap computes the sparse factor
matrices G using a threshold γG. This threshold provides a way to adjust the sparsity of
the candidate pathway groups and gene groups. In this work, we also numerically tuned
the sparsity threshold γG using the validation dataset.

4. Experiment on Cancer Type Prediction with NGS Data

Personalized medicine is becoming increasingly popular in cancer, which utilizes genetic
profiles of tumors to guide early screening, preventive measures and clinical decisions on
intervention options. The high throughput DNA sequencing technology has made genetic
variants data in cancer increasingly accessible. Understanding the association between
genetics and disease is important for understanding the underlying pathophysiologic onset
and progression. We focus on using germline variants (variants that are inherited from
a parent) to differentiate among different cancer types, which can inform early screening
strategy and even targeted therapy for specific cancer types (Bertelsen et al., 2019). We use
the proposed ScanMap framework to effectively explore the landscape of germline mutations
and their genetic pathways to predict cancer types.

In this experiment, we have used the dataset from The Cancer Genome Atlas (TCGA)
and focus on the top four prevalent cancers, including breast cancer, lung cancer, colorectal
cancer and prostate cancer (Siegel et al., 2019). We recalibrate aligned sequencing data from
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Table 3: Test accuracy of cancer type classification task on TCGA dataset. ScanMap sig-
nificantly outperforms comparison models based on permutation test (p < 0.05).
For the models directly using counts from genes and/or pathways, as well as mod-
els using unsupervised NMF produced features, we used logistic regression with
l2 regularization as the classifier. This is to be consistent with our motivation
of developing supervised NMF to better suit regression analysis in genetics, also
consistent with the choices of classifiers by other supervised NMF models.

Model k Test Accuracy

Gene count - 0.7525
Pathway count - 0.7387
Gene+pathway count - 0.7544
Gene count (confounding) - 0.8016
Pathway count (confounding) - 0.7701
Gene+pathway count (confounding) - 0.7682

NMFgene 250 0.7485
NMFpathway 100 0.7112
NMFgene (confounding) 400 0.8173
NMFpathway (confounding) 400 0.7819

wsNMFgene 200 0.7308
wsNMFpathway 400 0.6051
wsNMFgene (confounding) 350 0.7800
wsNMFpathway ( confounding) 100 0.7446

TNMFgene 150 0.7505
TNMFpathway 400 0.5992
TNMFgene (confounding) 250 0.7957
TNMFpathway (confounding) 500 0.7603

ScanMapgene 400 0.8468
ScanMappathway 150 0.7957

blood or adjacent normal tissues, and call variants using HaplotypeCaller in GATK package
with assembly hg19, which produces germline variants from Whole Exome Sequencing data.
We partition the included 2545 total subjects with a 6:2:2 ratio, stratified by mortality, into
a 1527-subjects training set, a 509-subjects validation set and a 509-subjects held-out test
set, as shown in Table 2. Our dataset has 626 pathways and 684 genes from the filtering
steps described in the Methods section.

The number of groups k in NMF models, including our model in equation 12, needs to
be empirically tuned. We tune this parameter using the validation set and consider a range
of group numbers from 50 to 500, at an increment of 50. For ScanMap, λ1, λ2 are tuned
using validation set and are set to 1 and 0.1 respectively. The sparsity threshold γG is tuned
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Figure 3: The t-SNE visualization of the learned test set subject features in TCGA.

on validation set and set to 0.001. NMF based models are often randomly initialized, thus
we also run initializations 10 times and select the best one using the validation set.

In order to assess whether performance changes are due to simply adding confounding
variables or integrative consideration of confounding variables in the model itself, we have
evaluated different comparison models under both without coufounding variables and with
confounding variables modes. The accuracy scores of ScanMap and comparison models on
the held-out test data are shown in Table 3. Comparing all the models and baselines, we can
see that the raw gene and/or pathway count has an accuracy at best 0.8016 when combined
with confounding variables. Note that without confounding variables, raw count features
see clear performance drop and the best AUC is only 0.7544. This is consistent with the
intuition that confounding variables indeed carry useful information in cancer type classifi-
cation. Also note that simply concatenating the gene count and pathway count matrix does
not improve accuracy. When adding confounding variables as additional features to NMF
produced features from gene count matrix, accuracy improves to 0.8173. Without con-
founding variables as additional features, NMF also does not produce improved accuracy.
For supervised NMF based models, wsNMF and TNMF in fact mostly suffer from accuracy
decrease from the unsupervised NMF models, with or without confounding as additional
features. This is possibly due to the fact that they do not take confounding variables into
their supervised training and may have learned gene and/or pathway groups that are id-
iosyncratic to the training set. The model based on our ScanMap-derived subject groups on
gene count matrix has the best performance, with an accuracy of 0.8468, significantly better
(p < 0.05 by random permutation test (Noreen, 1989)) than all state-of-the-art models with
a notable margin. Also note that in general, we have some performance drop across models
when working on pathway count matrix instead of gene count matrix. This likely reflects
that our current knowledge on pathway is still growing, and echoes our intuition that Scan-
Map on gene level data may still provide useful and discriminative features beyond known
molecular mechanisms.

Document Visualization. We give an illustrative visualization of the subjects’ features
learned by ScanMap and comparison models, using t-SNE (Maaten and Hinton, 2008).
Fig. 3 shows the visualization of the learned features corresponding to representative models
in Table 3. We observe that ScanMap can learn more discriminative subject group features
by jointly modeling genetic variants and confounding variables in a supervised manner,
compared with state-of-the-art supervised matrix factorization models.
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Table 4: Top genetic pathways associated with different cancer risks.

Breast Cancer Colorectal Cancer

Regulation of IFN-γ signaling Tryptophan metabolism

Pyrimidine metabolism TNF receptor signaling pathway

Synthesis of PIPs at the Golgi membrane Metabolism of lipids

Activation of HOX genes during differentiation Cholesterol biosynthesis

Regulation of FZD by ubiquitination TNFR1 Signaling Pathway

Lung Cancer Prostate Cancer

Regulation of TP53 Activity through Acetylation Signaling by GPCR

Activation of HOX genes during differentiation Olfactory transduction

PI5P Regulates TP53 Acetylation Elevation of cytosolic Ca2+ levels

E2F transcription factor network Regulation of FZD by ubiquitination

p73 transcription factor network G alpha (s) signaling events

5. Discussion and Future Work

Discovering pathway groups. We identify the top gene groups that are associated with

different cancers as follows. For each class f , we rank the classifier weights W
(1)
f and pick

the index of top weight, say r. We then take the gene group vector Gr and pick the indices of
genes with nonzero weights (recall we enforce sparsity constraints in gene factor matrix G)
associated with class f . We then perform gene set enrichment analysis (Subramanian et al.,
2005) for the top gene group associated with each cancer, and the top gene sets associated
with different cancer risks are in Table 4. From the table we see that many of the listed
gene sets reflect innate key events in the development of individual or multiple types of
cancers, consistent with knowledge from wet lab (e.g., Activation of HOX genes during dif-
ferentiation (Alanee et al., 2012), Regulation of FZD by ubiquitination (Ueno et al., 2013)).
Of note, the gene sets listed in Table 4 for each cancer type are all linked to the same top
gene group, thus ScanMap additionally connects the gene sets that likely function together
in tumorigenesis. Interestingly, interferon signaling and pyrimidine metabolism have been
linked in vitro (Lucas-Hourani et al., 2013) and are both connected to breast cancer de-
velopment and progression (Brown et al., 2017; Mojic et al., 2018); tryptophan and lipid
metabolism act in conjunction with TNF receptor signaling in colorectal cancer onset and
progression (Zhang et al., 2019; Pavlova and Thompson, 2016); both p53 (encoded by TP53)
and p73 are tumor suppressors and p73 network disruption is linked to chronic infections
and inflammation of the lungs (Marshall et al., 2016), which together likely predispose an
individual to lung cancer; activation of olfactory receptors is documented to be linked to
activation of GPCR signaling pathway and intracellular Ca2+ increase, and is in turn as-
sociated with proliferation of prostate cancer cells (Neuhaus et al., 2009). These analyses
suggest that besides providing useful and discriminative features, ScanMap on gene level
data can still provide insights into functional and molecular mechanisms by linking together
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multiple pathways that may function together and contribute to cancer development and
progression.

Besides significantly improved accuracy and added interpretability, ScanMap also runs
fast. For example, on TCGA data, with k = 500, ScanMap runs in 16.8 sec. However, our
study has limitations. The confounding matrix C is typically of very low dimension (e.g.,
age, gender, race) for most existing genetic datasets, thus we did not consider the need for
factorizing C in this study. When future genetic datasets are accompanied with rich phe-
notype data, collective matrix factorization methods (Singh and Gordon, 2008; Gunasekar
et al., 2016) can be considered. An increasing number of studies now come with both deep
genotyping data and deep phenotyping data, and the need for dimensionality reduction is
present for both modalities. In these cases, joint matrix factorization is needed where both
factorizations share the same subject matrix. This is currently beyond ScanMap’s capabil-
ity but will be future work. In addition, we did not attempt to build a Bayesian version of
ScanMap to account for uncertainty and give probablistic interpretaions. In future work,
we plan to incorporate priors on matrix structural parameters. Those priors can be used
to specify our knowledge or confidence level on putative driver mutations for cancers and
other diseases (Bailey et al., 2018). We also plan to perform ablation studies on the changes
in interpretation where the classifier used to regularize is from a different hypothesis family.
Other NIH dbGaP datasets such as cardiovascular disease related datasets may be used
to validate the algorithm, but TCGA dataset is currently one of the largest public genetic
dataset and hence the choice in this study. In the future, as even larger genetic datasets will
be collected through NIH programs such as All of Us and TopMed, we plan to build a full
generative model of the data and evaluate whether the constrained NMF setup is recovered
under such generative assumptions on the data.

6. Conclusions

We proposed a novel framework of Supervised Confounding Aware Non-negative Matrix
Factorization for Polygenic Risk Modeling (ScanMap) for genetic studies. ScanMap is de-
signed for using supervised learning for polygenic risk modeling to guide the Non-negative
Matrix Factorization while capable of considering a variety of confounding variables rang-
ing from subjects’ demographics to comorbidities. We showed that ScanMap improves the
accuracy of the learned model and provides insights on disease type and status prediction.
Confounding aware supervision effectively guided the learning of the groups of genes that are
discriminative features and that embody multiple interacting molecular mechanisms (gene
sets or pathways). This led to better accuracy with added interpretability. We compared
ScanMap with multiple state-of-the-art unsupervised and supervised matrix factorization
models, as well as different configurations of genes and pathways as features, with and with-
out confounding variables. ScanMap outperformed all the comparison models significantly
(p < 0.05). Feature analysis of the learned gene groups that are generated by ScanMap
offered more clinical insights about multiple molecular mechanisms that interact with each
other and are associated with disease types and status, which were automatically identified
from the data.
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