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Abstract

We propose a holistic framework based on state-of-the-art methods in Machine Learning
and Optimization to prescribe influenza vaccine composition that are specific to a region,
or a country based on historical data concerning the rates of circulation of predominant
viruses. First, we develop a tensor completion formulation to predict rates of circulation
of viruses for the next season based on historical data. Then, taking into account the
uncertainty in the predicted rates of circulation of predominant viruses, we propose a novel
robust prescriptive framework for selecting suitable strains for each subtypes of the flu virus:
Influenza A (HIN1 and H3N2) and B viruses for production. Finally, we train optimal
regression trees to predict efficacy of the prescribed vaccine in terms of both morbidity
and mortality rates using a set of weighted distances between the vaccine-strain and the
actual circulating viruses during a flu season for each subtypes of the flu virus. Through
numerical experiments, we show that our proposed vaccine compositions could potentially
lower morbidity by 11-14% and mortality by 8-11% over vaccine compositions proposed
by World Health Organization (WHO) for Northern hemisphere, and lower morbidity by
8-10% and mortality by 6-9% over vaccine compositions proposed by U.S Food and Drug
Administration (FDA) for USA, and finally, lower morbidity by 10-12% and mortality
by 9-11% over vaccine compositions proposed by European Medicines Agency (EMA) for
Europe.

1. Introduction

Influenza (flu) is a highly contagious respiratory viral disease and the seasonal flu epidemics
affect about 5-15% of the world’s population, and cause an estimated 3-5 million cases of
severe illnesses and up to half a million annual deaths worldwide. The flu viruses can be
segregated into four types, namely influenza A, B, C and D. Influenza A and B viruses
circulate and therefore are mainly responsible for seasonal flu epidemics, whereas influenza
C viruses are not detected frequently and usually cause mild infections; influenza D viruses
affect cattle and thus do not present a serious public health risk. Influenza A viruses are
classified on the basis of their two surface proteins: hemagglutinin and neuraminidase, into
18 different subtypes of hemaglutinin and 11 different subtypes of neuraminidase viruses.
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Together, all subtypes of influenza A and influenza B viruses are further classified into
various strains based on their antigenic properties (response to antibodies).

The flu shot (vaccine), which contains two strains of the influenza A virus (HIN1 and
H3N2) and one or two strains of the B virus is the first line of defense against seasonal
epidemics. The influenza B viruses have two distinct lineages, therefore in addition to a
vaccine containing three virus-strains, manufacturers also produce a vaccine containing four
virus-strains vaccine which includes two influenza B strains to cover both lineages. Most
individuals have some level of prior immunity. However, new strains with mutations in
their protein regions that are not recognized by human antibodies frequently arise and it
is well established that these strains have an advantage over existing dominant strains to
effectively escape from host immunity. This continuous process of evolution results in a
rapid turnover of the viral population and poses a great challenge to producing an effective
vaccine.

The flu vaccine is annually reformulated due to rapid emergence of new strains, and
prepared at least six to eight months in advance of the upcoming flu season in order to have
enough time for production and distribution. Every year, the vaccine compositions for the
Northern and Southern Hemispheres are reviewed and updated as necessary by the World
Health Organization (WHO) through a global surveillance and response system. The WHO
monitors and collects data on antigenic characterization, genetic variations, prevalence rates,
and geographic distributions of virus variants across the world. Although, antigenic char-
acterization of circulating viruses by standard ferret antibodies is the main determinant in
vaccine strain selection, many approaches have been proposed to partially explain mutations
in the virus strains using genomic data in the literature. Predicting emerging virus strains
is a complex problem due to the uncertain nature of the continuous evolution of the virus
strains. Moreover, predicting the fate of strains currently circulating in the population is
difficult for two reasons. First, multiple strains carrying different combinations of mutations
co-circulate and therefore compete with one another for potential hosts. Second, antigenic
characterization via ferret antibodies is different from that of human post-vaccination anti-
bodies because humans and ferrets have different immune systems as well as very different
prior exposure to influenza viruses (Agor and Ozaltin, 2018).

In order to tackle these challenges, we employ a variety of state-of-the-art methods
in machine learning and optimization to prescribe influenza vaccine composition that are
specific to a region, or a country based on historical data concerning the rates of circulation
of predominant viruses. Below, we briefly our outline approach.

1. Tensor completion: We adapt an algorithm proposed in Bertsimas and Pawlowski
(2019) to predict rates of circulation of viruses in a season. The historical rates
of circulation of viruses are available in the form of a three-dimensional matrix M &
R™*mXT \where n is the number of countries participating in WHO’s Global Influenza
Surveillance and Response System (GISRS), m is the number of viruses in the data
set and T is the number of flu seasons. Such a three-dimensional matrix is known as
a three-dimensional tensor.

About 88% of the tensor entries are missing. The major reason that the tensor is
very sparse is that GISRS has been adding viruses to the data set over time and
therefore, for newly identified viruses, we observe missing entries for all earlier flu
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seasons. Moreover, as viruses keep undergoing mutations over time, not all viruses in
the data set may be circulating in a particular flu season. Therefore, we observe a
lot of missing entries either due to the viruses undergoing mutations or some inherent
bias in the testing sample. For example, a sample tested in a particular laboratory
may miss out on some emerging strains which might be crucial to identify and predict
future circulating viruses.

In order to predict rates of circulation of viruses in the future, we propose to estimate
a low-rank tensor to approximate the observed data such that the low-rank component
of the tensor varies slowly across time. The reason that we impose such a constraint
on the low-rank component of the tensor is that we assume that the weights which
influence the system do not change drastically across consecutive flu seasons.

2. Optimal regression trees: In order to quantify the efficacy of a vaccine, we train
regression trees using the Optimal Regression Trees (ORTSs) algorithm proposed in
Bertsimas and Dunn (2017) to predict both the morbidity and mortality rates as a
percentage of the population using information about how effectively a vaccine-strain
hinders a virus’ ability to attack healthy red-blood cells. For this purpose, we use a
distance metric also called antigenic distance between a vaccine-strain and a virus for
each subtypes of the influenza virus, and define a weighted distance (see Cai et al.
(2012)) between a given vaccine-strain and all predominant circulating viruses as the
antigenic distance between each of these pairs weighted by the rates of circulating of
the corresponding virus during a flu season.

3. Robust optimization: Using the same weighted distance as a metric of perfor-
mance, we propose a novel robust prescriptive problem that minimizes the worst-case
weighted distance given some uncertainty about the rates of circulation of viruses in
the upcoming flu season in order to inform vaccine composition. The uncertainty
in the rates of circulation of viruses for the upcoming flu season is quantified by re-
stricting the low-rank component of the tensor decomposition to not deviate from its
counterpart from the previous time period. We reformulate the corresponding robust
prescriptive problem as a second order cone optimization probelm, and show that it
is both practically and theoretically tractable.

1.1. Related work

In this section, we review some related work in literature that propose methods to model
evolution of the viruses in order to inform strain selection for the seasonal influenza vaccine.

Wilson and Cox (1990) studied evolution of various virus strains and suggested that a
drift variant of epidemiologic importance usually contains at least four amino acid substitu-
tions located at more than two of the epitope regions (part of an antigen molecule to which
an antibody attaches itself) on the HA1 polypeptide. Lee and Chen (2004) showed that the
number of amino acid changes in the 131 amino acid positions around the epitope sites had
the highest correlation with the antigenic distance and the best performance for predicting
antigenic difference between any two virus strains. Liao et al. (2008) proposed construction
of similarity classes and substitution matrices, to explain the antigenic differences of viruses’
using genetic information, and employed statistical machine learning methods like iterative
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filtering, multinomial logistic regression and support vector machines to quantify the effect
of amino acid substitutions and identify major binding sites on the HA1 protein.

Steinbriick and McHardy (2012) used nonnegative least-squares optimization to map
pairwise antigenic distances onto the branches of a phylogenetic tree (Neher and Bedford,
2015). Steinbriick et al. (2014) combine phylogenetic trees and Allele Dynamics (AD) plots
to identify the HA mutations that are most likely to become predominant in the future
seasons. Neher et al. (2014) proposed a method to predict the fitness of a virus from its
genetic information, and analyzed the shape and branching pattern of the tree to identify
the fitness of different strains relative to each other.

He and Deem (2010) construct protein distance maps for the HA1 surface proteins of
the influenza 2009 A (HIN1) pandemic virus. In particular, they apply multi-dimensional
scaling to project a 329-residue long amino acid sequence of the HA1 protein onto two
dimensions and then use kernel density estimation to detect clusters on the protein distance
map. Luksza and Lassig (2014) develop a fitness model to predict the evolution of influenza
by identifying changes in the frequencies of strain groups referred to as clades. They consider
two major groups of mutations at the epitope and non-epitope regions of the virus’ surface
protein. Mutations at epitope regions are likely to be beneficial to the virus, whereas,
mutations outside epitope regions are often deleterious to the fitness of a virus. Luksza and
Lassig (2014) used their model to predict frequencies of clades one year in the future with
considerable accuracy. Although, some of these methods help identify a cluster or a set of
viruses predicted to circulate in the future, they do not optimize the vaccine composition
in anticipation of the uncertainty in their predictions.

Wu et al. (2005) formulated the strain selection problem as a stochastic dynamic program
using the antigenic shape-space model proposed in Perelson and Oster (1979) where the
antigenic evolution is assumed to be a random walk. Kornish and Keeney (2008) formulate
the strain selection problem as a finite-horizon optimal stopping problem, where at each time
step, a decision is made either to select one of two candidate strains, or to defer the selection
to the next time period. Cho (2010) build upon Kornish and Keeney (2008) by considering
the flu shot composition and production under yield uncertainty as a two-stage stochastic
game and show the existence of an optimal threshold policy. Ozaltin et al. (2018) propose
a bilevel model that integrates the annual flu shot design problem of a decision maker and
the profit-maximization problem of the vaccine manufacturers through a bilevel model in
a stochastic environment. They model the decision maker’s problem of strain selection as
a two-stage stochastic mixed-integer optimization problem and propose a heuristic using
Dantzig-Wolfe decomposition to solve it.

The above approaches consider the current state of the decision making process of a
committee where the committee is deciding whether to retain a vaccine strain from the
previous flu season or select the most prevalent new strain circulating in the environment. In
contrast, our approach is much more flexible in being able to identify emerging strains based
on historical data and personalize the vaccine composition for a specific region/country.
Moreover, none of these works quantify the efficacy of the vaccine in terms of morbidity
and mortality rates as they do not prescribe vaccines for a particular geographical region.
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1.2. Our contributions

This paper develops a holistic framework employing state-of-the-art methods in machine
learning and optimization for prescribing influenza vaccine composition, and predicting the
efficacy of the proposed vaccine in terms of morbidity and mortality rates for a particular
region or a country. To the best of our knowledge, this is the first work that employs
state-of-the-art methods in machine learning, namely tensor completion and ORTs, and
robust optimization for the problem of optimizing influenza vaccine composition based on
historical data.
The key contributions of this paper are summarized below.

1. We propose a novel tensor completion formulation that estimates a low-rank repre-
sentation of the circulation rates of viruses across various regions around the world
while restricting the low-rank component to not deviate much from its counterpart
from a previous time period. Leveraging algorithms for tensor completion, we develop
new algorithms to solve the corresponding restricted tensor completion problem.

2. We propose a set based uncertainty for the rates of circulation of viruses based on the
low-rank component of the matrix factorization and formulate a robust prescriptive
problem to choose vaccine composition that minimizes a worst-case weighted distance
between the chosen vaccine-strains and viruses that are predicted to circulate in the
future. We show that this problem can be reformulated as a second order cone opti-
mization problem and show that it is both practically and theoretically tractable.

3. Through a retrospective study, we illustrate the effectiveness of our approach in terms
of a weighted distance between the chosen vaccine composition and observed predom-
inant circulating viruses during a flu season in comparison to vaccine compositions
proposed by WHO for Northern Hemisphere, FDA for USA, EMA for Europe.

1.3. Notation

Lowercase and uppercase bold letters denote vectors and matrices, respectively. For a
tensor M € RP*9%" we denote the slices of the tensor as M', M?, ..., M" € RP*4. A tensor
unfolding, is an operation which essentially flattens the tensor into a matrix. The mode-1
unfolding of a tensor M € RP*?*" denoted by My, is the p x gr matrix whose columns are
the columns of M!,M?,...,M". Similarly the mode-2 unfolding, denoted by M3), is the
q % pr matrix whose columns are the transposed rows of M!, M2, ..., M". The Frobenius

1/2
norm of a matrix U € R™*" denoted by ||U||¢ is given as (Z;il > i ufj) . We denote
the set {1,2,...,n} by [n].

2. Data and Methods

In this section, we describe the data and methods used in our analysis to predict rates of
circulation of predominant viruses in a flu season, and to predict morbidity and mortality
rates given composition of a influenza vaccine and the observed rates of circulation of
viruses in a flu season. In Section 2.1, we describe the data that we use in our analysis.
In Section 2.2, we propose a novel tensor completion problem and present an algorithm
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to model evolution of rates of circulation of viruses through different seasons. Finally, in
Section 2.3, we review ORT's which we use to train regression trees for predicting morbidity
and mortality rates using factors such as weighted distance between the vaccine strain and
circulating viruses for each subtype of the influenza virus.

2.1. Data

Here, we describe the data that we use to inform influenza vaccine composition. The
WHO has a network of laboratories around the world that contribute to the GISRS system
which monitors and tracks properties of predominant circulating viruses using a test called
Hemagglutinin Inhibition (HI) test. Below, we provide a short description of data compiled
through GISRS, NIAID Influenza Research Database (IRD), The Centers for Disease Con-
trol and Prevention (CDC), and The European Centers for Disease Control and Prevention
(ECDC).

1. Rates of circulation of predominant viruses: The historical rates of circulation
of viruses are available in the form of a three-dimensional tensor (see Figure 1) M €
R™*m*T *where n is the number of countries contributing to the WHO’s GISRS
system, m is the number of viruses in the data set and 7" is the number of flu seasons.
Such a three-dimensional matrix is known as a three-dimensional tensor. Each entry
in the tensor is given by

Nt
M! = —<72%—, c€ [n],v € [m],t € [T], (1)
“Nn NG

where, N! is the number of observed cases of virus v found in tests performed in
country ¢ for flu season t. We denote the set of virus-strains belonging to influenza
A (HIN1) as Dyini, and similarly, for influenza A (H3N2) and B as Dysne and Dy
respectively. Each slice of the tensor representing a flu season from 1987 until 2018
(T = 32), and each slice consists of observed rates of circulation of m = 1206 viruses
in about n = 132 countries.

2. Estimates for morbidity and mortality rates due to influenza, and the cor-
responding flu vaccine compositions: We compiled various estimates of morbid-
ity and mortality rates for USA from the CDC website, for Europe from the ECDC
website, and for Northern and Southern hemispheres from GISRS and Iuliano et al.
(2018). The data for influenza vaccine composition over various years from 1987 until
2018 was obtained from the NIAID Influenza Research Database (IRD) (Bao et al.,
2008).

3. Antigenic properties of predominant circulating viruses: At each of the lab-
oratories that contribute to WHO’s GISRS, circulating viruses during a season are
subject to a HI (Hemagglutinin Inhibition) test which measures the ability of the an-
tibodies (injected by a vaccine) to block the Hemagglutinin (HA) protein of the virus
being tested from attacking healthy red blood cells. This data was obtained from
IRD and ImmPort (Bhattacharya et al., 2018). For each virus u and vaccine-strain
v, we have a corresponding HI value denoted by h,,, where u belongs to either of
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DN, Dusne, or Dp. Cai et al. (2012) proposed a distance metric between virus u
and vaccine-strain v as follows,

dyy = log (méxx (huv)/hm}> , (2)

where, max,, (hy,) is the maximum HI value for vaccine-strain v across all the viruses
in the data set. Multiple measurements of virus-strain and vaccine-strain distances are
available when antibodies raised against a viral strain are tested in multiple laborato-
ries or at several time points, or when multiple antibodies are raised against the same
strain. The resulting antigenic data set comprises of distances between p = 1,377
viruses and ¢ = 82 vaccine strains.

2.2. Tensor completion

Here, we present our tensor completion formulation to model the evolution of rates of
circulation of viruses across different geographies and flu seasons.

2.2.1. FORMULATION

First, we assume that a slice of the tensor M! € R™*™ t € {1,2,...,32} can be expressed
as the product M?* = US'V T, where U € R"*", V € R™*" are latent spaces and St € R™*"
is the low-rank component of the matrix factorization and r is assumed to be the rank of
M. Therefore, given the tensor of observed rates of circulating viruses across time and
geographies, the tensor completion problem to estimate a low-rank matrix approximation
for each time slice can be formulated as follows:

T
min Mt - UStVT 3
U,V,{St}; | 7 (3)

st. [|[St=8EV|p <A te{23,...,T},

where, ||-||F is the Frobenius norm and the parameter A is chosen by the user to control
for the deviation the low-rank component of the matrix factorization from its counterpart
from a previous time period. Problem (3) is non-convex, therefore, we use an alternating
optimization approach to solve it.

2.2.2. TENSOR UNFOLDING AND ALTERNATING OPTIMIZATION

To estimate the latent spaces U and V, we use the algorithm proposed in Bertsimas and
Pawlowski (2019), which is based on Farias and Li (2019). In the first step, we construct
the mode-1 unfolding M) € R™mT which which is a n x mT matrix whose columns
are the columns of M!, M2, ... MT” (the order of the columns does not matter). We then
compute U as the first 7 left singular vectors of M1). More precisely, assuming that My
admits the singular value decomposition M) = UlElVI, we set U to be the columns of
U; corresponding to the r largest singular values. We denote this entire procedure with the
shorthand

U= SVD(M(l), 7’).
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To estimate V, we apply a similar procedure using the mode-2 unfolding M;3), which is the
m x nT matrix whose columns are the transposed rows of M!, M2, ..., M”. Therefore, the
estimate of V is given by the r largest singular vectors of mode-2 unfolding M,y and we
denote this procedure as follows

A~

V= SVD(M(Q), T).

Given some estimates (ﬂ,V), Problem (3) reduces to a second order cone optimization

problem in {S*}_; as follows:

T
min » ~ M’ - US'V'| g (4)
83

st |8t =SEV|p <A, te{2,3,...T}.

Problem (4) is a second order cone problem in 77? variables and is tractable. Putting all
of this together, we present Algorithm 1 to solve Problem (3) for a given value of rank r,
parameter A and maximum number of iterations K. We evaluate r and A through k-fold
cross validation with five folds.

2.3. Optimal Regression Trees

In order to predict the morbidity and mortality rates given a vaccine composition, we use a
novel algorithm Optimal Regression Trees (ORTSs) proposed in Bertsimas and Dunn (2017)
to train predictive trees that combine state-of-the-art performance (at par with gradient
boosted trees) and interpretability. Such tree structures are based on a few decision splits
on variables of high importance, and can readily model non-linearities and interactions
between variables.

To predict morbidity and mortality rates, we used the following predictors that quantify
the ability of the vaccine-strains to hinder viruses’ ability to attack healthy red blood cells,

1. Weighted distance between influenza A (HIN1) strain and the corresponding circulat-
ing viruses: wpiNy = Zue Diini dyyTy, where, v is the chosen vaccine-strain, r, is the
normalized rate of circulation of virus v among all predominant viruses in a particular
flu season.

2. Weighted distance between influenza A (H3N2) strain and the corresponding circu-
lating viruses: wmsNz = Y ,c Disans QuvTu-

3. Weighted distance between influenza B strain and the corresponding circulating viruses:
wB = ZuEDB Ay Ty

During the training process, we tuned the parameters to maximize performance on a sepa-
rate holdout set to avoid overfitting.

In Figure 3, we present optimal regression trees that were trained on data from USA
from 1988 until 2018 to predict morbidity and mortality rates using weighted distances
between the vaccine-strains proposed by FDA and the actual viruses that circulated during
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a particular flu season. The regression tree trained to predict morbidity has an accuracy
(in terms of R?) of 0.77 and the one for mortality has an accuracy of 0.75. In both the
trees, wysNe appears as an important variable which is expected as it is well known that
influenza A (H3N2) strains highly volatile. Also, the positive coefficients of the weights
wH1N1, WH3N2 and wp in the leaves of the regression trees signify that higher weighted
distances between the vaccine-strains and predominant circulating viruses results in higher
morbidity and mortality rates.

3. Optimizing the Vaccine Composition

In this section, we propose a set based uncertainty for the rates of circulation of viruses based
on the low-rank component of the matrix factorization and formulate a robust prescriptive
problem to choose vaccine composition that minimizes the worst-case weighted distance
between the chosen vaccine-strain and the viruses that are predicted to circulate in the
future. In Section 3.1, we describe a nominal formulation for choosing vaccine formulation a
particular geographical location (prescribing country level, or region level influenza vaccine
compositions) and in Section 3.2, we present the robust prescriptive counterpart of the
nominal model.

3.1. Nominal model

Given estimates of antigenic distances d,,, (see equation (2)) between virus ‘u’ and vaccine-
strain ‘v, and let, Y = (y;,,) € R™*? denote the predicted rates of circulation of viruses, our
goal is to choose a suitable vaccine-strain which has the smallest weighted distance with the
predicted circulating viruses in a flu season. In order to select a suitable vaccine-strain to
be included in the vaccine formulation for some location i, we propose to solve the following
optimization problem:

p q
zerﬁ)i,lll}q Z Z ZouvYiu (5)

u=1v=1

st. Y=USp_V',

q
szzl,

v=1

where the term Y7 | dy,yiy, in the objective function represents a weighted distance between
all viruses u € [p] predicted to be circulating with frequencies {y;, }\_; and some vaccine-
strain v.

3.2. Robust prescriptive model

Here, we present the robust prescriptive problem to choose vaccine composition for a particu-
lar geographical location. Given a low-rank decomposition of the Tensor M* = US!*VT, ¢ €
[T] containing rates of circulating viruses in different locations, we formulate a robust op-
timization problem to choose a vaccine strain that is robust to mutations during the time
period the vaccines are manufactured and distributed.
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Observe that Problem (5) is very sensitive to the predicted rates of circulation of viruses.
Therefore, we propose using a set based uncertainty to capture any noise in the predictions
from the tensor model. We define an uncertainty set for rates of circulation of viruses as
follows,

Un(U,8,V) = {Y: Y =USVT, S - ||, < A}.

Therefore, instead of solving the nominal problem (5), we propose to solve the following
robust optimization problem,

P; = min max Z Z Zy Ay Yiu (6)

{01} yeu, (US,V) 1 = o)

Z zy = 1.
v=1

Lemma 1 (Neumann (1928)) The min-maz in Problem (6) can be interchanged, i.e.,
P q

min max E E ZolupYin = max E E 2y Qoo Yin -

{301 2o=12e{0,1} 9} {Yeu, (US,V)} . =+ 1 {Yeu (U8, V) {5 Ivalze{O B o=

Using Lemma 1, observe that for a given geographical location represented by i, the objective
function of Problem (6) is bilinear in z and Y;, therefore, we can perform a “minimax swap”
to obtain the following;:

P q
P; = max_ min Zzzvduvyiu (7)

Yeux(U,8,V) z€{0,1} * = *—
q
Z Zy = 1,
v=1

where the inner minimization problem can be reformulated as follows:

Pi = Qn%?j)sqe (8)
P
s.t €< Zdwyiu, Vo e {1,2,...,q},
u=1
Y =USV',
IS = Sllr < A

Problem (8) is a second order cone problem which can be further reduced by eliminating vari-
ables Y, and can be solved using off-the-shelf solvers. The vaccine-strain prescribed by the
model is given by ¢, where ¢ = argmin, Y »_, dy,y}, and the worst-case weighted distance
of the proposed vaccine-strains to the circulating viruses is given by w} = >0 _, dyeyZ,.

10
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4. Results

In this section, we present the performance of vaccine compositions prescribed by the robust
model in terms of predicted morbidity and mortality rates and compare it with that of WHO,
FDA and EMA using Optimal Regression Trees. The morbidity and mortality rates are
predicted using weighted distances between the vaccine strains and the observed rates of
circulation viruses for each subtype of the influenza virus.

4.1. Morbidity and Mortality Rates

In Figure 3, we present optimal regression trees that were trained on data compiled from
CDC, USA for flu seasons from 1988 until 2018 to predict morbidity and mortality rates
using weighted distances between the vaccine-strains proposed by FDA and the actual virus
strains that circulated during a particular flu season. For this analysis, we trained multiple
regression trees with a moving window size of 20 years starting from 1988 and used these
models to predict morbidity and mortality rates for the next flu season given some vaccine
compositions along with observed rates of circulation of viruses.

In Tables 1, 2 and 3, we present a retrospective comparison of predicted mortality
and morbidity rates based on the vaccine composition prescribed by WHO for Northern
hemisphere, FDA for USA and EMA for Europe with our prescriptions for flu seasons during
2009-2018 respectively. We compare the effectiveness of prescribed vaccine composition by
training regression trees using Optimal Regression Trees (ORTSs) algorithm for predicting
both morbidity and mortality using the following variables: (1) wyini, & weighted distance
between influenza A (HIN1) strain and the corresponding circulating viruses, and similar
weighted distances for influenza A (H3N2) and influenza B viruses (2) wmini, and (3)
wp. During the training process, we tuned the parameters to maximize performance on a
separate holdout set to avoid overfitting.

Table 1: Retrospective 8-year comparison of number of illnesses and mortality under vac-
cine proposed WHO vs. robust prescriptive model for Northern hemisphere using Optimal
Regression Trees (accuracy reported in terms of R?).

Illnesses (in Millions) Mortality (in Thousands)

‘ Season ‘ Observed WHO Robust Accuracy ‘ Observed WHO Robust Accuracy
2010-2011 3.2 3.27 2.71 0.68 427 432.4  378.7 0.74
2011-2012 2.6 3.52 2.84 0.68 362 435.1 392.3 0.73
2012-2013 4.2 3.37 3.37 0.71 436 434.3  434.3 0.76
2013-2014 3.9 3.73 3.26 0.69 438 481.7  417.5 0.78
2014-2015 3.7 3.58 3.43 0.72 451 466.8  438.3 0.72
2015-2016 3.6 3.34 3.11 0.74 463 434.1  402.8 0.77
2016-2017 4.4 3.92 3.68 0.71 482 504.2  468.3 0.70
2017-2018 4.2 4.56 4.13 0.67 461 483.6  451.8 0.73

In Table 1, we compare the effectiveness of vaccine compositions for Northern hemisphere
against WHO. We observed that in seven of the eight flu seasons, vaccine prescribed by
the robust model had a smaller number of morbidity and mortality cases. On average,
vaccine compositions prescribed by the robust model could potentially lower morbidity by

11
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Table 2: Retrospective 8-year comparison of number of severe illnesses and mortality under
vaccine proposed FDA vs. robust prescriptive model for USA using Optimal Regression
Trees (accuracy reported in terms of R?).

Severe Illnesses (in Millions) Mortality (in Thousands)

‘ Season ‘ Observed FDA  Robust  Accuracy ‘ Observed FDA Robust Accuracy ‘
2010-2011 21 24.4 26.1 0.78 37 36.7 37.1 0.72
2011-2012 9.3 24.7 20.8 0.73 12 31.4 29.6 0.76
2012-2013 34 30.6 28.2 0.75 43 39.2 36.7 0.71
2013-2014 30 29.3 26.4 0.81 38 40.3 38.4 0.70
2014-2015 30 32.7 28.5 0.83 51 44.2 27.4 0.73
2015-2016 25 28.7 25.9 0.77 25 35.8 33.1 0.74
2016-2017 30 31.6 28.8 0.75 51 43.8 41.6 0.71
2017-2018 49 34.6 31.7 0.77 79 49.6 46.4 0.75

Table 3: Retrospective 8-year comparison of number of illnesses and mortality under vaccine
proposed by EMA vs. robust prescriptive model for Europe using a Optimal Regression
Trees (accuracy reported in terms of R?).

Tlnesses (in Millions) Mortality (in Thousands)

‘ Season ‘ Observed EMA Robust Accuracy ‘ Observed EMA Robust Accuracy ‘
2010-2011 12.1 13.1 12.4 0.78 82.5 82.8 81.7 0.68
2011-2012 8.6 11.7 10.2 0.76 68.6 79.4 78.4 0.71
2012-2013 14.3 14.5 12.8 0.79 87.5 85.2 83.4 0.67
2013-2014 13.7 12.7 13.4 0.76 79.3 79.4 81.2 0.69
2014-2015 13.4 13.6 12.7 0.75 103.4 87.2 85.6 0.74
2015-2016 11.6 13.3 12.9 0.76 76.3 85.8 83.1 0.71
2016-2017 124 13.2 12.5 0.72 105.3 92.8 89.6 0.67
2017-2018 15.8 14.2 13.7 0.74 132.7 97.6 95.4 0.64

11-14% and mortality by 8-11% over vaccine compositions proposed by WHO for Northern
hemisphere.

Similarly, in Table 2, we compare the effectiveness of vaccine compositions for USA.
Again, we observed that in seven of the eight flu seasons, vaccine compositions prescribed
by the robust model had a smaller number of morbidity and mortality cases, and in only
one season, we had greater morbidity and mortality cases. Vaccine compositions prescribed
by the robust model could potentially lower morbidity by 8-10% and mortality by 6-9%
over the ones proposed by FDA for USA.

Finally, in Table 3, we compare the effectiveness vaccine compositions for Europe. We
observed that in seven of the eight flu seasons, vaccine compositions prescribed by the robust
model had a smaller number of morbidity and mortality cases. Through ORTSs, we show
that vaccine compositions prescribed by the robust model could potentially lower morbidity
by 10-12% and mortality by 9-11% over the ones proposed by EMA for Europe.
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4.2. Prescribed Vaccine Formulations

Here, we compare the performance of the flu vaccine compositions prescribed by the robust
model containing a type A (HIN1) virus in Section 4.2.1, a type A (H3N2) virus in Section
4.2.2, and a type B virus in Section 4.2.3 with the ones prescribed by WHO for Northern
hemisphere, FDA for USA, and EMA for Europe in terms of weighted distance between
the prescribed vaccine strains and the observed rates of circulation of viruses during the flu
season.

4.2.1. INFLUENZA TYPE A (HIN1) VIRUS

In Tables 4, 7 and 8 (in Appendix), we present a retrospective comparison of the HIN1-like
virus strain as proposed by WHO for Northern hemisphere, FDA for USA and EMA for
Europe with the ones prescribed by the robust model, respectively for the flu seasons during
2009-2018 in terms of a weighted distance wiNi-

In Table 4, we present vaccine strains prescribed by the robust model along with the
ones proposed by WHO for Northern hemisphere. We observed that in four of the ten flu
seasons, vaccine strains prescribed by the robust model had a smaller weighted distance
with the observed circulating viruses and in four other seasons, the robust model prescribed
the same vaccine strains as WHO.

In Table 7, we compare vaccine strains prescribed by the robust model with that of FDA
for USA. We observe that in three of the ten flu seasons, vaccine strains prescribed by the
robust model had a smaller weighted distance with the observed circulating viruses. And
in five other flu seasons, the robust model and FDA proposed exactly same strains. Finally,
in Table 8, we present vaccine strains prescribed by the robust model with that of EMA
for Europe. We observe that in five of the ten flu seasons, vaccine strains prescribed by the
robust model had a smaller weighted distance with the observed circulating viruses and in
four other seasons, the robust model prescribed the same vaccine strains as EMA.

Table 4: Retrospective 10-year comparison of vaccine-strains (for influenza Type A (HIN1)-
like virus) proposed by WHO vs. robust prescriptive model for Northern hemisphere.

Weighted distance Proposed vaccine
‘ Year ‘ WHO  Robust ‘ WHO Robust ‘
2009 | 3.51 3.23 A /Brisbane/59/2007 A /South Dakota/6,/2007
2010 | 3.64 3.64 A /California/07,/2009 A /California/07 /2009

2011 | 3.38 3.38 | A/California/07/2009  A/California/07/2009
2012 | 3.19 3.26 | A/California/07/2009  A/Victoria/361/2011

2013 | 349  3.29 | A/California/07/2009 A/Perth/56/2012
2014 | 3.03 3.03 A /California/07/2009 A /California/07,/2009
2015 | 3.18 3.18 A /California/07,/2009 A /California/07 /2009

2016 | 3.67 3.42 | A/California/07/2009 A/Hong Kong/4801/2014
2017 | 3.71 3.44 | A/Michigan/45/2015  A/Wisconsin/67/2016
2018 | 3.37 3.51 A/Michigan/45/2015  A/Wisconsin/67/2016

13
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4.2.2. INFLUENZA TYPE A (H3N2) VIRUS

In Tables 5, 9 and 10 (in Appendix), we present a retrospective comparison of the H3N2-like
virus strain as proposed by WHO for Northern hemisphere, FDA for USA and EMA for
Europe with the ones prescribed by the robust model, respectively for the flu seasons during
2009-2018 in terms of a weighted distance wysns.

In Table 5, we compare vaccine strains prescribed by the robust model with that of
WHO for Northern hemisphere. We observe that in six of the ten flu seasons, vaccine
strains prescribed by the robust model had a smaller weighted distance with the observed
circulating viruses and in two other seasons, the robust model prescribed the same vaccine
strains as WHO.

In Table 9, we compare vaccine strains prescribed by the robust model with that of
FDA for USA. We observed that in five of the ten flu seasons, vaccine strains prescribed by
the robust model had a smaller weighted distance with the observed circulating viruses and
in three other flu seasons, the robust model prescribed the same vaccine strains as FDA.
Finally, in Table 10, we compare vaccine strains prescribed by the robust model with that of
EMA for Europe. We observed that in six of the ten flu seasons, vaccine strains prescribed
by the robust model had a smaller weighted distance with the observed circulating viruses
and in two other seasons, the robust model prescribed exactly the same vaccine strains as
EMA.

Table 5: Retrospective 10-year comparison of vaccine-strains (for influenza Type A (H3N2)-
like virus) proposed by WHO vs. robust prescriptive model for Northern hemisphere.

Weighted distance Proposed vaccine

‘ Year ‘ WHO  Robust ‘ WHO Robust
2009 | 3.59 3.37 A /Brisbane/10,/2007 A /Uruguay/716/2007
2010 | 3.86 3.27 A /Perth/16,/2009 A /California/7/2009
2011 | 3.41 3.41 A/Perth/16/2009 A/Perth/16/2009
2012 | 3.32 3.48 A/Victoria/361,/2011 A/Victoria/210/2009
2013 | 3.65 3.10 A /Victoria/361/2011 A /Texas/50,/2012
2014 | 3.42 3.37 A/ Texas/50/2012 A/Wisconsin/15,/2009
2015 | 3.15 2.97 A/Switzerland /9715293 /2013 A/Norway /466/2014
2016 | 3.54 3.54 A /Hong Kong/4801/2014 A /Hong Kong/4801/2014
2017 | 4.08 3.51 A /Hong Kong/4801/2014 A /Singapore/INFIMH-16-0019/2016
2018 | 3.36 3.42 A /Singapore/INFIMH-16-0019/2016 A /Switzerland /8060/2017

4.2.3. INFLUENZA TYPE B VIRUS

We present a retrospective comparison of the influenza B vaccine strain chosen by WHO,
FDA and EMA with the ones prescribed by the robust model for the flu seasons during
2009-2018 in Table 6, 11 (in Appendix), respectively in terms of a weighted distance wg.
In Table 6, we compare vaccine strains prescribed by the robust model with that of
WHO for Northern hemisphere. We observed that in six of the ten flu seasons, vaccine
strains prescribed by the robust model had a smaller weighted distance with the observed
circulating viruses and in three other seasons, the robust model and WHO proposed exactly
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same strains. In Table 11, we compare vaccine strains prescribed by the robust model
with that of FDA for USA. We observed that in six of the ten flu seasons, vaccine strains
prescribed by the robust model had a smaller weighted distance with the actual circulating
viruses and in three other flu seasons, the robust model prescribed exactly same strains as
FDA.

Table 6: Retrospective 10-year comparison of vaccine-strains (for influenza Type B virus)
proposed by WHO vs. robust prescriptive model for Northern hemisphere.

Weighted distance Proposed vaccine

‘ Year ‘ WHO Robust ‘ WHO Robust ‘
2009 | 3.21 3.21 B/Brisbane/60/2008 B/Brisbane/60/2008
2010 | 3.53 3.53 B/Brisbane/60,/2008 B/Brisbane/60,/2008
2011 | 3.34 3.17 B/Brisbane/60/2008 B/Wisconsin/01/2010
2012 3.21 3.21 B/Wisconsin/01,/2010 B/Wisconsin/01,/2010
2013 | 3.43 3.22 B/Massachusetts/02/2012 B/Massachusetts/02/2012
2014 | 3.31 3.14 B/Massachusetts/02/2012 B/Brisbane/33/2008
2015 3.24 3.12 B/Phuket/3073/2013 B/Brisbane/9/2014
2016 | 3.23 3.40 B/Brisbane,/60,/2008 B/Utah,/09,/2014
2017 | 3.54 3.15 B/Brisbane,/60,/2008 B/Phuket/3073/2013
2018 | 3.42 3.16 B/Phuket/3073/2013 B/Colorado/06,/2017

5. Conclusions

In this paper, we have proposed a holistic framework employing state-of-the-art methods
in machine learning and optimization to prescribe influenza vaccine composition based on
historical data regarding circulating viruses in the population compiled through WHO’s
Global Influenza Surveillance and Response System (GISRS). Specifically, we proposed
a novel tensor completion formulation that restricts low-rank component in the matrix
factorization to not deviate from its counterpart from a previous time period. Using the
estimates from tensor completion, we formulated a robust optimization problem to prescribe
vaccine composition that is robust to rates of circulation of the viruses in region using a set
based uncertainty on the low-rank component. Finally, we trained Optimal Regression Trees
to predict both morbidity and mortality rates using weighted distances between vaccine
viruses and circulating viruses during a flu season. Through various numerical experiments,
we showed that our proposed vaccine compositions could potentially lower morbidity and
mortality by 11-14%, 8-11% respectively over vaccine compositions proposed by WHO for
Northern hemisphere, and lower morbidity and mortality by 8-10%, 6-9% over vaccine
compositions proposed by FDA for USA, and finally, lower morbidity and mortality by
10-12%, 9-11% respectively over vaccine compositions proposed by EMA for Europe.
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Appendix A.

A.1. Tensor: Structure and Unfoldings

Circulating virus strains

Countries

Figure 1: Rates of circulation of predominant viruses across different times represented as
slices of a tensor M.
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M) = Mm! M2 . mt

M) = mHT M7 R (MyT

Figure 2: Example of mode-1 and mode-2 unfoldings of a tensor M.

A.2. Optimal Regression Trees

Figure 3: Optimal regression trees to predict morbidity (in Millions) and mortality (in
Thousands) in USA for flu seasons from 1988 till 2018. The variables Distyini, Distpsne and
Distg denote weighted distances between the predominant circulating viruses and influenza
A (HIN1), A (H3N2) and B strains, respectively.

(a)

Figure 4: Regression tree for predicting morbidity (accuracy in terms of R? : 0.77).

False

(a)

Figure 5: Regression tree for predicting mortality (accuracy in terms of R? : 0.75).
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Algorithm 1 Tensor completion (Problem (3))

Data: Incomplete tensor X € R™*"*T Rank r, parameter A and max iterations K.

Result: (Ij, {ét}thl, \7)

Yo+ X and k + 1.
while k£ < K do

k=k+1
end

U, = SVD (Yk,l,(l),r)
Vi = SVD (Yk_l,(z),r)

{ASk}tT:Al = Solve Problem (4) with estimates (U, V) and parameter A
Y= USLVT, te[T]

return (ﬂK, {SAtK};f:l, VK> .

A.3. Prescribed Vaccine Compositions

Table 7: Retrospective 10-year comparison of vaccine-strains (for H1N1-like virus) proposed

by FDA vs. robust prescriptive model for USA.

Weighted distance

Proposed vaccine

| Year | FDA  Robust | FDA Robust
2009 | 3.22 3.35 A /Brisbane/59/2007 A /Wisconsin/67/2005
2010 | 3.34 3.34 A /California/07/2009 A /California/07/2009
2011 | 3.09 3.0 A/California/07/2009 A /California/07 /2009
2012 | 3.27 3.14 A /California/07/2009 A /South Australia/55/2014
2013 | 3.59 3.37 A /California/07/2009 A /Wyoming/03/2010
2014 | 3.48 3.48 A/California/07/2009 A /California/07 /2009
2015 | 3.62 3.62 A /California/07/2009 A /California/07/2009
2016 | 3.30  3.06 | A/California /07,2009 A/Brisbane/10/2012
2017 | 3.17 3.53 A/Michigan/45,/2015 A/Brisbane,/10,/2007
2018 | 3.26 3.26 A/Michigan/45,/2015 A/Michigan/45,/2015
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Table 8: Retrospective 10-year comparison of vaccine-strains (for H1N1-like virus) proposed
by EMA vs. robust prescriptive model for Europe.

Weighted distance

Proposed vaccine

‘ Year ‘ EMA  Our model ‘ EMA Our model ‘
2009 | 3.51 3.23 A /Brisbane/59/2007 A /Brisbane/59/2007
2010 3.64 3.64 A /California/07/2009 A /California/07,/2009
2011 | 3.38 3.38 A /California/07/2009 A /California/07,/2009
2012 3.19 3.26 A/California/07/2009 A/Victoria/361/2011
2013 3.49 3.29 A /California/07/2009 A /Victoria/361/2011
2014 | 3.03 3.03 A /California/07/2009 A /Christchurch/16/2010
2015 | 3.18 3.18 A /California/07/2009 A /California/07/2009
2016 | 3.67 3.42 A/California/07/2009 A /Michigan/45/2015
2017 | 3.71 3.44 A/Michigan/45/2015 A /Brisbane/10/2012
2018 | 3.37 3.51 A /Michigan/45/2015 A /Wisconsin/67/2016

Table 9: Retrospective 10-year comparison of vaccine-strains (for H3N2-like virus) proposed
by FDA vs. robust prescriptive model for USA.

Weighted distance

Proposed vaccine

‘ Year ‘ FDA Robust ‘ FDA Robust

2000 | 3.48 3.48 A/Brisbane/10/2007 A/Brisbane,/10/2007

2010 3.64 3.36 A/Perth/16,/2009 A /California/7,/2009

2011 | 3.34 3.07 A /Perth/16/2009 A /Uruguay/716,/2007

2012 | 3.09 3.32 A/Victoria/361/2011 A/Wisconsin/15,/2009

2013 | 3.75 3.57 A/Victoria/361,/2011 A/Texas/50,/2012

2014 | 3.46 3.46 A /California/7/2009 A /California/7/2009

2015 | 3.23 3.12 A/Switzerland /97152932013 A/Norway /466/2014

2016 | 3.21 3.06 A/Hong Kong/4801,/2014 A /Stockholm/6/2014

2017 | 2.92 2.92 A /Singapore/INFIMH-16-0019/2016 A /Singapore/INFIMH-16-0019/2016

2018 3.04 3.04 A/Singapore/INFIMH-16-0019/2016 A /Singapore/INFIMH-16-0019/2016
Table 10: Retrospective 10-year comparison of vaccine-strains (for H3N2-like virus) pro-

posed by EMA vs. robust prescriptive model for Europe.

Weighted distance

Proposed vaccine

‘ Year ‘ EMA Robust ‘ EMA Robust

2009 | 3.22 3.37 A /Brisbane/10/2007 A /Brisbane/60/2008
2010 | 3.46 3.29 A/Perth/16/2009 A/California,/7,/2009
2011 | 3.53 3.53 A /Perth/16/2009 A /Perth/16/2009
2012 | 3.21 3.06 A /Massachusetts/2/2012 A /Victoria/210/2009
2013 | 3.67 3.39 A/Victoria/361,/2011 A/Wisconsin/1,/2010
2014 | 3.35 3.03 A /Texas/50/2012 A /Wisconsin/15/2009
2015 | 3.42 3.17 A /Switzerland /9715293 /2013 A /Phuket/3073/2013
2016 | 3.43 3.43 A /Hong Kong/4801/2014 A/Hong Kong/4801/2014
2017 | 3.38 3.51 A /Singapore/INFIMH-16-0019/2016 A /Michigan/45/2015
2018 | 3.35 3.12 A /Singapore/INFIMH-16-0019/2016 A /Switzerland/8060,/2017
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Table 11: Retrospective 10-year comparison of vaccine-strains (for influenza Type B virus)
proposed by FDA vs. robust prescriptive model for USA.

Weighted distance

OPTIMIZING INFLUENZA VACCINE COMPOSITION

Proposed vaccine

‘ Year ‘ FDA Robust ‘ FDA Robust

2009 | 3.25 3.25 B/Brisbane/60,/2008 B/Brisbane/60,/2008
2010 | 3.64 3.64 B/Brisbane/60,/2008 B/Brisbane/60,/2008
2011 | 3.38 3.21 B/Brisbane/60/2008 B/Wisconsin/01/2010
2012 | 3.17 3.17 B/Wisconsin/01,/2010 B/Wisconsin/01,/2010
2013 | 3.49 3.26 B/Massachusetts/02/2012 B/Malaysia/2506,/2009
2014 | 3.12 2.97 B/Massachusetts/02/2012  B/Brisbane/33/2008
2015 | 3.18 3.04 B/Phuket/3073/2013 B/Brisbane/9/2014

2016 | 3.67 3.42 B/Brisbane,/60,/2008 B/Utah,/09,/2014

2017 | 3.71 3.44 B/Brisbane,/60,/2008 B/Phuket/3073/2013
2018 | 3.37 3.51 B/Phuket/3073/2013 B/Colorado/06,/2017
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