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Abstract

AI-driven medical history-taking is an important component in symptom checking,
automated patient intake, triage, and other AI virtual care applications. As history-taking
is extremely varied, machine learning models require a significant amount of data to train.
To overcome this challenge, existing systems are developed using indirect data or expert
knowledge. This leads to a training-inference gap as models are trained on different kinds
of data than what they observe at inference time. In this work, we present a two-stage re-
ranking approach that helps close the training-inference gap by re-ranking the first-stage
question candidates using a dialogue-contextualized model. For this, we propose a new
model, global re-ranker, which cross-encodes the dialogue with all questions simultaneously,
and compare it with several existing neural baselines. We test both transformer and S4-
based language model backbones. We find that relative to the expert system, the best
performance is achieved by our proposed global re-ranker with a transformer backbone,
resulting in a 30% higher normalized discount cumulative gain (nDCG) and a 77% higher
mean average precision (mAP). As part of this work, we also release pre-trained checkpoints
for bi-directional and autoregressive S4 models trained on Wikipedia and PubMed data.

1. Introduction

History taking is a critical component of a medical encounter (Hampton et al., 1975). It
involves collecting relevant patient-reported information such as presenting symptoms, pa-
tient concerns as well as the past medical, psychological and social history. This information
forms the basis of subsequent patient triage, diagnosis, and care planning. While history
taking is an important component of the medical encounter, it is also one of the most time-
consuming components (Soltau et al., 2021; Chen et al., 2020) and when done incompletely
can lead to triage, diagnostic, and treatment errors (Hampton et al., 1975).

Creating tools for automating portions of history taking has been an on-going effort
for more than five decades (Watson, 1965). The simplest of such tools are static pre-visit
questionnaires that are now used widely in US healthcare. However, static questionnaires
tend to be long, ask not very relevant questions, and are not customized to patients’ needs.
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More recently, there has been work on building intelligent systems that can adjust questions
based on patient responses (see (Valmianski et al., 2021; Compton et al., 2021) and citations
therein). However, developing the medical reasoning necessary for these systems is difficult.
Existing approaches include using reinforcement learning with simulated patients (Tang
et al., 2016; Kao et al., 2018), supervised learning on clinical notes (Valmianski et al.,
2021), and expert systems (Compton et al., 2021).

In all of the previous works, the medical reasoning system was built on top of data that
was a proxy for real doctor-patient interactions. This is because, on the one hand, there is
little available data consisting of doctor-patient history-taking dialogue, on the other hand,
the space of possible questions asked during history-taking is very large. Thus, training
a history-taking model requires significant amounts of labeled interaction data. However,
this data is more readily available from indirect sources such as medical notes, expert
knowledge, or simulations. This creates a training-inference gap: the data that is used to
train the model is not fully representative of the data that the model sees at inference time.

This training-inference gap has a significant impact on the quality of history taking,
especially since only a few questions can be asked in a given encounter. This calls for an
approach that reconciles the difficulty of supporting a large set of potential questions to
a small set of pertinent questions attuned to the patient’s health issue, with only a small
amount of direct training data.

In this paper, we start with an expert system and show how to use a relatively small
amount of real doctor-patient dialogue data to close this training-inference gap. We take in-
spiration from the information retrieval literature where “retrieve and re-rank” is a popular
paradigm for computationally efficient retrieval of documents from a large corpus (Nogueira
and Cho, 2019; Lin et al., 2021). In our case, the “retrieve” part is performed by the expert
systems which retrieves a list of possible questions to ask the patient, and a dialogue-trained
re-ranker then “re-ranks” the possible questions. Because the re-ranking model takes the
original expert system’s candidate questions, it does not need to predict over the space of
all possible questions. Instead, it only needs to re-rank from a much smaller subset, which
greatly simplifies the machine-learning task. Our model takes both the previous dialogue
and the possible questions as free text entries, which means that the system can operate
even if the underlying expert system is replaced with something else.

Our contributions are as follows:

1. We propose a two-step approach to history-taking question selection where we use an
expert system to retrieve a list of candidate questions and then use a machine-learned
re-ranker to get the top question to ask.

2. We propose a novel “global re-ranker” which embeds both the preceding dialogue and
candidate questions into a single long string. We then train long context language
models to predict the relevance of each question simultaneously.

3. We perform a careful study of other re-rankers for this task. This includes different
architectures such as bi-encoder, cross-encoder, and autoregressive re-rankers. We ex-
amine different long context models including S4 (bi-directional and autoregressive),
Nystromformer (bi-directional, variants with Nystrom attention and with full atten-
tion), and LongT5 (autoregressive). We examine the effect of different loss functions
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from the pointwise, pairwise, and listwise families. Finally, we perform some ablation
studies on the context length and the initial retrieval ordering.

4. We release checkpoints for S4 pre-trained both bidirectionally and autoregressively on
the English subset of Wikipedia1 and Pubmed PMC Open Access Subset2 datasets.

5. We find that our global re-ranker approach performs better than other more tradi-
tional approaches. Furthermore, all re-rankers significantly improve the original ex-
pert system performance. We also find that S4-based, while worse than full-attention
transformers, is competitive with the Nystrom-attention transformer.

2. Generalizable Insights about Machine Learning in the Context of
Healthcare

One of the main challenges in using deep learning for healthcare is the lack of large annotated
datasets. Obtaining large amounts of annotated data is costly and time-consuming because
annotations need to be provided by trained healthcare professionals. Recent works have
successfully leveraged the progress in the development of large language models that are
trained on web-scale data. In many tasks, including medical history taking discussed in this
paper, this approach introduces a training-inference gap: the data used to train the model
does not fully represent the data that the model sees at inference time. In this context,
our approach of retrieving a candidate set of answers (we use an expert system as the base
model to provide candidates, but this can come from a large language model, too) and then
using a learned reranker based on small amounts of labeled data is a promising alternative.
As we show in this paper, such a reranker can be trained from public data sources and then
fined tuned to the task.

3. Related work

We study re-ranking history-taking recommendations based on doctor-patient dialogue.
These dialogues tend to be long and exceed the typical token-length limits of transformer
models. As such, there are two bodies of literature relevant to this work. § 3.1 discusses
work on modern neural long-range language models that are able to encode the entire
doctor-patient conversation. § 3.2 discusses work on re-ranking algorithms that can take
the encoded dialogue and use it to re-rank history-taking questions.

3.1. Long-range transformers

Transformers (Vaswani et al., 2017) have become the mainstream architecture for natural
language processing. With the self-attention mechanism, transformers can attend to all to-
kens in a sequence simultaneously, thereby being more powerful than classical architectures
like convolutional (LeCun et al., 1989) or long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) networks. However, due to its O(n2) complexity, the original trans-
former cannot process long sequences efficiently. Popular pre-trained language models such

1. https://huggingface.co/datasets/wikipedia
2. https://www.ncbi.nlm.nih.gov/pmc/tools/textmining/
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as BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019) can only process up to
512 tokens. Efforts have been made to reduce the computational complexity of transform-
ers, as a variety of efficient transformers that can process long text sequences have been
proposed, such as Reformer (Kitaev et al., 2019), Linformer (Wang et al., 2020), Long-
former (Beltagy et al., 2020), BigBird (Zaheer et al., 2020), Performer (Choromanski et al.,
2020), Nystromformer (Xiong et al., 2021), LongT5 (Guo et al., 2021), etc. In addition to
transformers, alternative approaches have also been shown to be promising for processing
very long sequences, notably state-space models (Gu et al., 2021, 2022; Mehta et al., 2022).
The Structured State Space Sequence model (S4) (Gu et al., 2021) has significantly out-
performed many long-range transformers in the Long Range Arena benchmark (Tay et al.,
2020). In this paper we utilize the Nystromformer(Xiong et al., 2021) and the S4 model(Gu
et al., 2021) as the possible non-autoregressive backbones and LongT5 as an autoregressive
backbone.

3.2. Re-ranking

Modern information retrieval (IR) or question answering (QA) systems are usually divided
into two stages (Nogueira and Cho, 2019; Lin et al., 2021). In the first stage, given a query,
a large number of documents are retrieved using an efficient method. In the second stage, a
computationally intensive but more accurate method is used to re-rank documents retrieved
in the first stage. This is analogous to our problem statement where we use an expert system
to retrieve a set of relevant history-taking questions, and then use a re-ranking algorithm
as the second stage. Relevant related work addresses both the architectural choices that
can be made for the re-rankers, as well as the loss functions used to train them.

Architectures for second-stage re-ranking. There are three main type of architec-
tures (1) bi-encoders (Lin et al., 2021; Nogueira et al., 2019; Reimers and Gurevych, 2019;
Thakur et al., 2021) (2) cross-encoders (Lin et al., 2021; Nogueira et al., 2019; Humeau et al.,
2019) and (3) autoregressive re-rankers (Nogueira et al., 2020; Pradeep et al., 2021; Min
et al., 2021). In the bi-encoder architecture, the query and the candidate document are en-
coded into vector representations by two separate encoders (though these two encoders can
share the same weights (Reimers and Gurevych, 2019)). The relevance score is calculated
as the distance between the two vector representations. In a cross-encoder, a query and a
candidate document are concatenated together and fed into the cross-encoder in a single
pass. In most use cases, cross-encoders outperform bi-encoders in document retrieval and
ranking (Thakur et al., 2021; Humeau et al., 2019); however, bi-encoders are usually more
efficient than cross-encoders, as all documents in a given corpus can be pre-computed and
stored as dense embeddings for retrieval, thereby avoiding repeated computations (Reimers
and Gurevych, 2019). Recent sequence-to-sequence models such as T5 (Raffel et al., 2020)
have also been applied to autoregressive re-ranking. In this approach, the query and the
documents are usually encoded by the encoder and the decoder either predicts whether
the document is relevant (Nogueira et al., 2020) or directly generates the retrieved text in
response to the query (Min et al., 2021).

Scoring functions for ranking. There are also several scoring paradigms possible for
ranking: (1) “pointwise” scores where the relevance of a query is computed on a per-
document basis (similar to cross-encoders) (Nogueira et al., 2019), (2) “pairwise” scores
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where documents are ranked relative to each other in pairs (Nogueira et al., 2019), and
(3) “listwise” scores where a list of candidates are ranked simultaneously (Liu et al., 2009).
Prior studies show that pairwise and listwise approaches tend to outperform pointwise
approaches (Nogueira et al., 2019; Pradeep et al., 2021; Min et al., 2021; Zerveas et al.,
2021; Chen et al., 2021). In this study, we compare all three (‘pointwise’, ‘pairwise’, and
‘listwise’) approaches for re-ranking history-taking questions but mainly focus on listwise
approaches.

Figure 1: (a) Bi-encoder, (b) the cross-encoder and (c) the proposed global reranker.

Connection to our proposed global re-ranker. In this paper we propose a novel re-
ranker approach we call “global re-ranker.” In this approach, all candidate documents are
concatenated into a single input that is then processed by a long context language model.
For schematic comparison between bi-encoder, cross-encoder, and global re-ranker please
see Figure 1. For a more detailed description of the method see § 5. Concatenating pairs
of documents into a single string has been previously done both in bi-directional (Nogueira
et al., 2019) and autoregressive (Pradeep et al., 2021) paradigms. These models only inves-
tigate pairwise scoring due to length constraints imposed by the pre-trained transformer.
For listwise ranking with more than two documents, previous approaches focused on rank-
ing only the extracted embeddings (Chen et al., 2021; Ai et al., 2019), which doesn’t model
the deep semantic relationships between candidate documents.

4. Closing the train-inference gap with re-ranking

An overview of our approach to closing the train-inference gap in an existing history-taking
system can be seen in Figure 2. We first use an expert system to suggest relevant history-
taking questions and then use a deep neural network contextualized by the entire doctor-
patient dialogue to re-rank expert system suggestions.

The goal of re-ranking is, given the prior dialogue context d and a list of n candidate
history-taking questions Q = [q1, q2, . . . , qn], to generate a new list Q′ which consists of
(possibly reordered) questions from Q such that the higher relevance questions appear
earlier in the sequence. In our case, the candidate questions are generated using an in-
house Expert System, and the ground truth labels y = [y1, y2, . . . , yn], yi ∈ {0, 1} represent
whether a doctor asked a given recommended question (1 if the question was asked, 0
if the question was not asked). A doctor may ask multiple questions at the same time,
thus multiple elements of y can have a value of 1, see § 6.1 for more details on how the
ground truth is produced. Finally, in all of the models studied in this work, the re-ranking is
achieved by assigning scores s = [s1, s2, . . . , sn] to each question in Q, and then constructing
Q′ by reordering using scores in s.
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Figure 2: Overview of the proposed two-stage history-taking workflow. An expert sys-
tem suggests candidate questions based on relevant entities extracted from the
dialogue. A machine-learned deep neural network re-ranker then re-ranks the
candidate questions based on the dialogue text.

5. Global re-ranker

We propose the global re-ranker, an accurate and efficient listwise re-ranking method. In
this approach (see Figure 1(c) for a schematic), the history-taking dialogue and all candidate
history-taking questions are concatenated into a single text input, using which the model
then assigns the ranking scores to all questions simultaneously. The global re-ranker directly
encodes all texts through the language model, thereby ensuring deep semantic interactions
not only between the dialogue and the candidate questions but also between all candidate
questions.

The input text to the global re-ranker is the concatenation of both the dialogue context
and all the candidate questions: [CLS] d [SEP] q1 [MASK1][SEP] q2 [MASK2][SEP] . . . qn
[MASKn][SEP], where the [SEP] token is used to mark the boundaries of candidate questions.
The [MASKi] token is the pooling token for the preceding question qi. For each pooling
token [MASKi], the global reranker predicts a score si, which represents the relevance for qi.
We also added type embeddings to every input tokens to indicate whether it belongs to the
dialogue or the candidate questions. The actual number of candidate questions provided
by the expert system ranged from 3 to 40.

While self-attention itself does not assume any inherent order of the input sequence,
pretrained transformer models usually encode the text sequentially due to the presence of
positional embeddings. In the current task, it is expected that a language model learns the
sequential relations between words within d and qi. From our ablation experiments (see
§ 7.2), we found that the best performance is achieved when the model is agnostic to the
order of input questions [q1, q2, . . . , qn]. In order to remove the positional bias, we reset
the positional embedding when each new question starts.

We selected three different neural architectures to implement the global ranker, all
of which can process long textual sequences. The first two approaches are based on the
Nystromformer (Xiong et al., 2021), which was originally proposed to be an efficient trans-
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Train Dev Test

Num. Encounters 12105 311 655
Num. Samples 26106 626 1361
Avg. Length of Dialog. 287.2 374.7 288.8
Num. Selected Questions 4.0 3.8 4.1
Num. Candidate Questions 27.9 26.6 28.1
Avg. Length of Questions 8.0 8.1 8.0

Table 1: Statistics of different data splits. Text lengths were calculated based on words.

former. We experiment with Nystromformer with both Nystrom attention turned on and
turned off (in which case it uses full attention). We use Nystromformer as the base of our
“full attention” transformer because this enables us to leverage the pretrained Nystrom-
former checkpoints that had been trained on long texts and retain the good performance
of full attention. We learned from pilot experiments that other efficient transformers such
as Longformer (Beltagy et al., 2020) failed to converge. The third neural architecture is
a state-space model, S4, which has been shown to process long sequences more effectively
than many transformers (Gu et al., 2021).

To train the global re-ranker, we compared a variety of loss functions across point-wise,
pair-wise and listwise approaches in the learning-to-rank framework (Liu et al., 2009). The
point-wise baseline was trained with binary cross-entropy. For pairwise loss functions, we
tested the RankNet (Burges et al., 2005) and LambdaRank (Burges et al., 2006). The
listwise loss functions we used were ListNet (Cao et al., 2007), ListMLE (Xia et al., 2008),
ApproxNDCG (Qin et al., 2010) and NeuralNDCG (Pobrotyn and Bialobrzeski, 2021), the
latter two of which directly optimized the Normalized Discounted Cumulative Gain (NDCG)
metrics.

6. Experiments

6.1. Data

The medical dialogue data was collected from a portion of real doctor-patient interactions
collected on our text-based medical service platform, Curai. In a typical interaction, the
physician asks a series of history-taking questions that can be entered either as free text or
selected from a list of recommendations. These recommendations are made using the Expert
System that forms the first stage in our proposed workflow. At each dialogue turn where
recommended questions are asked, the doctor selected questions are marked as relevant
and the not-selected questions are marked as irrelevant. This forms a natural dataset of
doctor annotated selections on which we train our re-rankers.

The dataset consists of 13071 encounters. We filtered non-history-taking dialogue turns
using in-house dialogue segmentation model, similar to Wang et al. (2022). The detailed
statistics of our data are displayed in Table 1.
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6.2. Metrics

For evaluation, we adopted two common ranking metrics, normalized discounted cumulative
gain (nDCG)(Järvelin and Kekäläinen, 2000) and mean average precision (mAP) (Lin et al.,
2021). The mAP assumes binary relevance whereas nDCG can work with both binary and
continuous relevance. Specifically for global re-rankers, the average metrics over 5 repeated
runs of evaluations were reported. In each run, the order of candidate questions fed to the
global re-ranker was randomly reshuffled to mitigate positional biases.

6.3. Baseline approaches

In addition to the global ranker, we also implement three widely adopted baseline ranking
approaches: bi-encoder, cross-encoder, and autoregressive re-ranker.

Bi-encoder. In the bi-encoder architecture (see Figure 1(a)), the dialogue query and the
candidate questions are encoded by two separate encoders fD and fQ, and the relevance
score between the two resulting vector representations are computed with cosine similarity.
The bi-encoder learns an embedding space where the dialogue representation is close to
the most relevant questions while being distant from less relevant questions. The training
objective is to minimize the InfoNCE loss function (Oord et al., 2018) through contrastive
learning with 7 negatives randomly sampled from the list of recommended candidate ques-
tions by the Expert System. The temperature parameter of the InfoNCE loss was set to
0.05 throughout the training (Gao et al., 2021).

Cross-encoder. In the cross-encoder architecture (see Figure 1(b)) the prior dialogue is
concatenated with a candidate question. The cross-encoder fC assigns a relevance score to
this candidate question using a classification head on top of the contextual representation of
the dialogue and the query. We consider transformers and S4-based models. For transform-
ers, the [CLS] token is treated as the contextual representation. For the bi-directional S4
re-rankers, we use average pooling of the last layer to obtain the contextual representations.
All cross-encoder variants are trained with the binary cross-entropy loss.

Autoregressive re-ranker. We also consider autoregressive re-rankers (Nogueira et al.,
2020; Pradeep et al., 2021). For a transformer baseline, we use a pre-trained LongT5 (Guo
et al., 2021). The query and the document are concatenated together to form the input
sequence: Query: d Document: qi Relevant:, which is fed into the encoder. The decoder
then predicts true for relevant documents or false for irrelevant documents. During in-
ference, a softmax function is applied to the logits of the true and the false tokens to
normalize the results across multiple queries.

For autoregressive S4, when we followed the Long-T5 method, we found it to highly
unstable and failed to converge, similar to what was found in the literature (Nogueira et al.,
2020) on its dependency certain keywords e.g., true/false. Therefore, we followed the same
setting as in the cross-encoder, except that the underlying model is autoregressive rather
than bi-directional. Here, the concatenated dialogue and a candidate question are fed into
the S4 re-ranker and the average pooling of the last layer is classified as either relevant or
irrelevant through a classification head.
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6.4. Implementation

S4 model pretraining. The S4 model was based on the original implementation of S4
language model(Gu et al., 2021), in which the S4 layers were used as a drop-in replacement
for the self-attention layers in a typical transformer. We implemented a 12-layer bidirec-
tional and autoregressive S4 models. We set the hidden dimensions to 768 in order to match
the parameter count of mainstream pretrained transformers (such as BERT-base (Devlin
et al., 2019)), and the number of state-space machines (SSM) to 128 with 64 states for each
SSM.

Both bidirectional S4 and autoregressive S4 models were pretrained on large-scale texts.
The autoregressive S4 was pretrained with the casual language modeling task on the whole
English subset of Wikipedia. The second iteration of pretraining, initialized with the pre-
trained Wikipedia checkpoint, was on the whole Pubmed PMC Open Access Subset. The
bidirectional S4 models were pretrained on the same datasets but with the mask language
modeling task using the same masking settings as in BERT (Devlin et al., 2019). The
maximum sequence length for pretraining was set to 8192 and the effective batch size was
256.

All models were optimized with AdamW optimizer with a learning rate of 1e-4 and the
learning rate was dynamically adjusted using the Cosine Scheduler with a warm-up step of
1000. The pretraining took place on 8×RTX 3090 GPU with 24GB of memory. The training
was stopped when the evaluation loss stopped to decrease (∼12k steps for all models). The
autoregressive and bi-direction checkpoints pre-trained on these datasets will be released
together with this paper.

Transformer implementation. Transformer models were all implemented through the
Transformers package (Wolf et al., 2020) with default dimensions. The autoregressive
model was LongT5 (Guo et al., 2021) initialized by the long-t5-tglobal-base checkpoint.
Other transformers were based on the Nystromformer (Xiong et al., 2021) with initialization
from the public checkpoint uw-madison/nystromformer-4096.

Re-ranker training. For global re-rankers, the maximum input length was set to 4096
with an effective batch size of 32. For other models, the effective batch size was 64 and
the maximum length was 2048, as this length was enough to cover almost all of the data
samples. Models were trained with a maximum of 5 epochs and only the model with the
best validation performance was kept. All models were trained using the AdamW optimizer
(Loshchilov and Hutter, 2018) with a learning rate of 5e-5. We used a cosine scheduler with
a warm-up step of 1000 to automatically adjust the learning rate during training. All
ranking models were trained on a single V100 GPU with 16GB of memory.

7. Results

7.1. Main results

Our main results are summarized in Table 2. All neural re-ranking models outperform the
baseline Expert System in both metrics, suggesting that re-ranking does up-rank the more
relevant history-taking questions. Among the neural baselines, the transformer-based cross-
encoder outperforms the bi-encoder, which is consistent with previous findings (Nogueira
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Model
Dev Test

nDCG mAP nDCG mAP

Expert System (Baseline) 0.592 0.383 0.570 0.349

Bi-encoder (Transformer) 0.690 0.548 0.677 0.531

Cross-encoder

Transformer 0.718 0.584 0.706 0.566
Nystromformer 0.653 0.496 0.654 0.497
Bidirectional S4 (Wiki Pretraining) 0.648 0.490 0.641 0.481
Bidirectional S4 (Pubmed Pretraining) 0.643 0.483 0.630 0.464

Autoregressive Re-ranker

LongT5-base 0.690 0.546 0.678 0.529
Autoregressive S4 (Wiki Pretraining) 0.658 0.502 0.648 0.490
Autoregressive S4 (Pubmed Pretraining) 0.654 0.498 0.642 0.484

Global Re-ranker

Transformer
+ Pointwise loss: BCE 0.744 0.618 0.743 0.618
+ Pairwise loss: RankNet 0.739 0.612 0.735 0.603
+ Pairwise loss: LambdaLoss 0.739 0 616 0.739 0.612
+ Listwise loss: ListNet 0.737 0.609 0.740 0.610
+ Listwise loss: ListMLE 0.727 0.597 0.721 0.587
+ Listwise loss: ApproxNDCG 0.701 0.555 0.697 0.550
+ Listwise loss: NeuralNDCG 0.742 0.617 0.741 0.612

Nystromformer
+ Pointwise loss: BCE 0.684 0.537 0.678 0.530

Bidirectional S4 (Wiki Pretraining)
+ Pointwise loss: BCE 0.667 0.516 0.663 0.510

Bidirectional S4 (PubMed Pretraining)
+ Pointwise loss: BCE 0.697 0.556 0.670 0.518

Table 2: Results of reranking experiments.

et al., 2019). Surprisingly, the LongT5 autoregressive re-ranker, despite having more param-
eters (220M parameters), also performs worse than the cross-encoder (∼110M parameters).

The best performance is achieved by the global re-ranker for both transformer and S4
architectures, regardless of the loss functions chosen. Among the various loss functions, the
pointwise binary cross-entropy (BCE) performs the best. Our hypothesis is that since our
ground truth relevance scores are binary rather than continuous, the current task does not
make full use of the listwise loss functions.

The effectiveness of the global re-ranker lies in the fact that it attends to the semantic
interactions not only between the dialogue and the candidate questions but also between the
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candidate questions themselves. This allows the model to exploit the dependencies between
history-taking questions, such as co-occurrence statistics, to improve ranking outcomes.

It is also worth noting that, despite its outstanding performance in some long sequence
processing benchmark (Gu et al., 2021), S4 still lags behind transformers in the current task.
One reason could be that the S4 model here has only been pre-trained on a comparatively
small amount of texts, while transformers have been pre-trained on huge amounts of texts.
Furthermore, the text sequences in our task range from a few hundred to about three
thousand words, which might not be long enough for S4 to reveal its full potential.

7.2. Ablation analysis

We conducted ablation analyses on the global re-ranker to assess the impact of dialogue
context length, the effect of type embeddings, and the effect of shuffling candidate question
order. The results are displayed in Table 3.

Context length ablations. When ablating on context length, only the last N tokens of
the dialogue were considered (full model is 4096 tokens, ablation are 3072, 2048, and 1024
tokens). While most of the text sequences were shorter than 1000 tokens, truncating texts
still decreases test performance on some text sequences that are particularly long (longer
than 1024), as some important information could be removed. In general, the global re-
ranker benefits from getting more dialogue contexts, though this benefit seems to diminish
after expanding to more than 2048 tokens.

Effect of position and type embeddings. We find that the removal of type embeddings
(which are learned embeddings that differentiate whether the token is from dialogue or a
candidate question) has almost no impact on the test performance. We reset the positional
embeddings for each candidate questions in the input sequence, as this might help the model
learn to be agnostic to the order of questions. We trained a model that used sequential
positional embeddings for the input sequence. It turned out that positional embeddings
played a minor role in training the global re-ranker.

Effect of shuffling. We tested the importance of permutation invariance with regard to
the order of input candidate questions. The list of candidate questions [q1, q2, . . . , qn] were
concatenated with the prior dialogue as an input to the model. We found that while the
expert system should produce questions in order or relevance, performance was significantly
higher when the model was trained with shuffled order. We believe that this forces the model
to learn to re-rank the questions without falling back to the original order of the candidate
questions.

8. Discussion

In this work, we address an important problem of closing the training-inference gap for
automated medical history-taking. Our approach, inspired by modern neural information
retrieval systems, has two stages: (1) we use an expert system to suggest a list of candidate
questions (out of possible thousands), (2) we train a machine-learned re-ranking model
to re-rank expert system-suggested questions based on the free text of the doctor-patient
dialogue.
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Ablation
Dev Test

nDCG mAP nDCG mAP

- Maximum length: 4096 (Full) 0.744 0.618 0.743 0.618
- Maximum length: 3072 0.741 0.614 0.739 0.611
- Maximum length: 2048 0.746 0.622 0.747 0.622
- Maximum length: 1024 0.747 0.623 0.737 0.609
- No type embedding 0.733 0.610 0.732 0.607
- Sequential position embedding 0.749 0.625 0.741 0.613
- No random shuffling of questions 0.515 0.313 0.523 0.319

Table 3: Results of ablation studies on global re-ranker

To perform re-ranking (stage 2), we introduce a new approach which we call “global
re-ranker”, and compare it to existing neural baselines. We also explore several language
model back-bones including various transformers and structure-state-space (S4) models3.
We find that while all neural re-ranking models outperform the original expert system, the
global re-ranker with a full-attention transformer backbone performs the best with a 30%
increase in nDCG and 77% increase in mAP over the first-stage recommendations.

While our results directly show the effectiveness of training a re-ranking model on top
of an expert system for history taking, we believe this approach can also be applied to other
decision support systems. The conditions under which this approach is beneficial are the
following: (1) There exists a scoring system that has a training-inference gap (2) The space
of possible predictions is very large, and as such would require a lot of data to machine-learn
from scratch. One example beyond history-taking where we believe these conditions are
satisfied is medical diagnosis prediction. There are many expert-system-derived diagnosis
models, and training a diagnosis model from scratch can be difficult as the space of possible
diagnosis is very large. Re-ranking could be used to close the gap between an off-the-shelf
diagnostic expert system and the practice’s actual patient population outcomes.

Limitations This work is still limited in several ways. While our proposed global re-
ranker had exhibited best overall performance over other ranking models, it is still compu-
tationally inefficient as the full attention transformers have quadratic computational com-
plexity in processing long sequence. This will become a more serious bottleneck as the
dialogue gets longer or the number of candidate questions increases. Secondly, the global
re-ranker only learns the association between history-taking questions and the dialogue
contexts from languages but it does not have the underlying medical knowledge. It will
be paramount to augment such models with real medical knowledge such that it makes
more informed decisions and does not biased against low frequency long-tail history-taking
questions. In the future, we plan to investigate more effective approaches to encode long
textual contexts and inject knowledge into language mdoels.

3. As part of this publication, we release bi-directional and autoregressive S4 checkpoints pre-trained on
the English Wikipedia and Pubmed PMC Open Access Subset. The code and checkpoints are available
at: https://github.com/curai/curai-research/tree/main/dialogue-contexualized-re-ranking
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8.1. Ethics

This work was done as part of a quality improvement activity as defined in 45CFR §46.104
(d)(4)(iii) – secondary research for which consent is not required for the purposes of “health
care operations.”
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