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Abstract

Univariate high-frequency time series are dominant data sources for many medical, eco-
nomic and environmental applications. In many of these domains, the time series are tied
to real-time changes in state. In the intensive care unit, for example, changes and in-
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Temporal Representation Learning of Intracranial Pressure

tracranial pressure waveforms can indicate whether a patient is developing decreased blood
perfusion to the brain during a stroke, for example. However, most representation learning
to resolve states is conducted in an offline, batch-dependent manner. In high frequency
time-series, high intra-state and inter-sample variability makes offline, batch-dependent
learning a relatively difficult task. Hence, we propose Spatial Resolved Temporal Networks
(SpaRTeN), a novel composite deep learning model for online, unsupervised representa-
tion learning through a spatially constrained latent space. SpaRTeN maps waveforms to
states, and learns time-dependent representations of each state. Our key contribution is
that we generate clinically relevant representations of each state for intracranial pressure
waveforms.

1. Introduction

In high-frequency time series data like intracranial pressure waveforms, rapidly predicting
and detecting changes in state is a clinically important task. For example, if a patient in
the intensive care unit starts exhibiting intracranial pressure decompensation, it may cause
bilateral blindness (Mollan et al. (2016)). Consequently, early detection of state transitions
may provide clinicians with the tools to intervene appropriately for better outcomes. For
example, at early stages, cerebral vascular decompensation can be treated with a loop
diuretic like furosemide (Llwyd et al. (2022)).

Second, a growing amount of research is indicating the need to redefine critical illness by
biological state rather than a non-specific illness syndrome (Maslove et al. (2022)). Large
scale cohort studies, enabled by the sheer volume of patients in the intensive care unit dur-
ing the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic—suggests
that the current syndrome-based framework of critical illness should be reconsidered. Large
variability in patient responses are inadequately characterized by over-simplified diagnos-
tic codes such as ”acute respiratory distress syndrome”. More precise subphenotyping of
underlying pathophysiology via data-driven clustering algorithms may inform more precise
interventions at the bedside. SpaRTEn takes a key step towards personalized care in the in-
tensive care unit by generating individualized state representations in real-time. Identifying
the clinical correlates of these state representations enables an interpretable understanding
of waveforms, which can propagate critical care research, and eventually allow for targeted
therapies in the intensive care unit.

Many algorithms like shapelets, hierarchical latent factor models, hidden Markov Model-
like methods, change point and anomaly detection techniques, and N-Beats are dedicated
towards disentangling time series into their respective subcomponents (Li et al. (2021);
Grabocka et al. (2015); Oreshkin et al. (2019a); Blazquez-Garcia and Conde (2022); Aminikhang-
hahi and Cook (2017); Van Den Oord and Vinyals (2017)) but few are dedicated towards
disentangling states within a single time series (Franceschi et al. (2019)) or predicting future
state transitions. For high-dimensional datasets, unsupervised methods like t-SNE, UMAP,
and SOMs can be used to project samples into lower dimensions with spatial relationships
(Van der Maaten and Hinton (2008); McInnes et al. (2018)). However, in time series, dimen-
sionality is proportional to series length. As a result, state determination requires encoding
time series into fixed-length vectors, followed by clustering algorithms like k-means. These
methods can capture long-range dependencies but rely on non-differentiable function fitting.
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Also, these methods are often offline, in that they learn from an entire training dataset
at once, before being evaluated and deployed. This can be problematic, especially in the
context of dataset shift or high inter-sample variability. Every time a new batch of data
is received, the entire model needs to be retrained. High-frequency time series data like
waveforms are often encountered in scenarios more suitable for online learning, wherein a
learner attempts to tackle some predictive task by learning a sequence of data in the order
they are received (Hoi et al. (2021)).

Extraction of states or state-transitions from a high-frequency time series requires online
unsupervised representation learning, a relatively understudied field. Fuzzy neural networks
create a set of modifiable rules (Luo et al. (2019)), but successive rule changes makes
state inference relatively volatile and inconclusive. Another example of the state-of-the-art
time series forecasting method is temporal fusion transformers (TFTs), which can provide
interpretable risk prediction via attention mechanisms (Lim et al. (2021); Kamal et al.).
This method combines feature attention with sequence attention to generate interpretable
forecasts, and has shown great promise in time series forecasting.

In this work, we propose Spatial Resolved Temporal Networks (SpaRTeN), a composite
differentiable unsupervised deep learning network to learn a discrete spatial representation
from a high frequency time series via temporal ensemble learning. We show that our
method outperforms SOTA methods such as TFTs with the same number of parameters in
benchmarks of online learning tasks. We also note that these other methods can be included
within our method due to the flexibility of the composite model.

Generalizable Insights about Machine Learning in the Context of Healthcare

• We introduce SpaRTEn, a new framework for online learning of spatial representations
from high-frequency time series.

• We demonstrate that introduction of a latent space improves rather than harms
SpaRTEn’s ability to forecast and cluster high frequency data in real-time, compared
to state of the art models.

• We show that SpaRTeN can generate clinically meaningful representations of medical
intracranial pressure waveforms.

2. Related Work

2.1. Twin Neural Networks

Twin neural networks contain two or more identical subnetworks (He et al. (2018)), and can
learn semantic similarity between different samples. Subnetworks cast as recurrent neural
networks have been used to learn and visualize time series similarities (Pei et al. (2016)).
Like twin neural networks, our framework employs contrastive loss with subnetworks, but
does not force subnetworks to share all the weights or even architectures.

2.2. Temporal Ensembles and Mixture of Experts

Ensemble Learning refers to a family of techniques where multiple learners are trained to
solve the same problem (Zhou (2009)). Ensemble methods construct multiple hypotheses
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from these base learner algorithms and join them to generate a prediction that generalizes
much better than the individual algorithms. Ensembles with base learner LSTMs have been
used on financial time series forecasting to improve performance (Sun et al. (2018)). Our
framework forces base learners to occupy a Euclidean space, which can subsequently be
used to generate interpretable representations. Other online unsupervised methods with
time series have developed composite or adaptive model approaches focused on anomaly
detection followed by model adaptation (Karaahmetoglu et al. (2020); Savitha et al. (2020)).
Having distinct sub-networks for each state allows for different models to uniquely represent
distinct states.

The key advantage of utilizing the framework proposed in the paper over a mixture
of experts is the idea of state separation,which allows visualization and explainability via
representation. Utilizing the novel contrastive function to promote diversity in recurrent
neural networks allows for state separation. This is particularly relevant in the medical
setting - state separation allows for different interventions. Learning these representations
can allow a provider to give a drug or an economist to change a fiscal policy. We provide
the specific example of the ICU measurements, where if an individual belongs to a state
where cerebral ischemia is identified, then an intervention targeting cerebral ischemia can be
provided. Mixtures of expert models do not typically generate representations to interpret
and therefore, limits explainability in state-dependent time-series analysis.

2.3. Discrete Latent Spaces

Discrete latent spaces have been utilized in the past with relatively high degrees of success.
For example, VAEs can discretize the latent space with an encoder-decoder setup, and has
been more heavily applied to interpreted disentangling of discrete representation learning
?. There are a few key differences between the VAEs and SpaRTEn in terms of 1) gen-
erated output, and 2) task flexibility. While VAEs generate a representation in the latent
space, SpaRTEn clearly identifies the representation in the space of the time series (Figure
1b). Generating a representation in the same space as the time series allows for improved
explainability, and therefore, intervention. For example, if a patient has an ICP waveform
that belongs to the state where there is cerebral ischemia, then clinicians can make an inter-
vention relevant to cerebral ischemia. Current VAE based methods generate representations
in a latent space, and the relevant clinical state must be extracted from additional data.
Second, VAEs are typically constrained to reconstruction or KL-divergence based loss. In
their current implementation, they have yet to be implemented for forecasting. Finally,
SpaRTEn can take advantage of the diverse potential loss functions for the R-Block and
improve individual sub-networks.

One extension of VAEs with a spatially resolved latent space encodes time series in a
self-organizing map (Fortuin et al. (2018)). Self-organizing maps are an extension of discrete
latent spaces that represents an input space with fixed dimensionality as a discrete two-
dimensional Euclidean space. Each node in the two dimensional map is a single neuron, and
the best matching neuron is adjusted towards input. This model learns state transitions via
Markov modeling on the self-organizing map. We extend self-organizing maps differently,
where nodes represent distinct subnetworks rather than a decodable state, which allows
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distinct weights and architectures. Using a separate block to predict the node, we can
eliminate the Markov chain used in SOM-VAEs.

3. Methods

Mathematical notation is precisely defined in (Appendix 6)

3.1. Problem Formulation

For the purposes of time series forecasting, we examine the problem of simultaneously
learning:

1. a function S : xt → st, which maps a time series xt of length k, {xt−k, xt−k+1, . . . , xt},
to a discrete state st, and

2. a set of functions Rst : xt → ŷt which, for each state st, map the input time series
of length k to a forecast time series ŷt = {xt+1, xt+2, . . . , xt+w} of length equal to the
prediction window w.

S and R are optimized to maximize the probability of assigning the time series xt to
the most suitable function R(.) as determined by an objective function L:

max
S

min
R(.)

E[L(RS(xt)(xt))]

where the expectation E[L(.)] is taken over the set of all time series. In contrast to the
minmax framework described for GANs in (Goodfellow et al. (2014)), our networks are
collaborative - helping each other out to determine the best state the corresponding best
predictions for that state.

3.2. Model architecture and the forward pass

We implement the above with a composite model architecture depicted in Figure 1, where
S and R are depicted as analogously named blocks. The height a and width b, common
to the two blocks, represents the two dimensional discrete state space, which can also be
considered to be the latent space for this model.

The S block implements convolutional filters (Appendix 6) to map an input time series
xt to a density over the discrete two dimensional space of states (green arrow 1). The R
block consists of a spatially arranged ensemble of LSTM sub-networks, each of which makes
a forecast for the input xt with a prediction window of w (blue arrow 1). For each input
xt, the sub-network in R corresponding to the greatest density output by S (green arrow
2) is used for generating the prediction ŷt (blue arrows 2, 3).

We choose to place st in a two-dimensional discrete state-space (i, j), because it facil-
itates easy visualization of time series corresponding to individual states, which previous
methods like SOM-VAE and TFT are unable to currently do. We can parameterize the
number of states by adjusting the width and height of the latent space, a and b. The state
space width and height are hyper-parameters that should be adjusted depending on the a
priori assumptions of dataset complexity.
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Figure 1: Schematic representation of model architecture. Blue is S-Block propaga-
tion and green is R-Block. Time series from the data space are forecast by the
sub-networks in an R-block with a look-forward period of k. The dimensionality
of the spatial representation is a a × b. Simultaneously, an S-Block predicts the
most relevant sub-network for the time series. The predicted sub-network is used
to generate a forecast and is then back-propagated via Equation 1.

3.3. Loss functions and Training with backpropagation

When implemented as described here, the entire system can be trained with backpropaga-
tion. Two distinct loss functions have to be accounted for, for the S and R blocks.

Sub-networks of R can have a primary objective (Lobjective) of forecasting, classification
or reconstruction if we assign yt to be the forecasting window, a labeled class or xt, re-
spectively. For the examples in this paper, we consider the objective to be forecasting. To
further impose structure, we introduce a second objective inspired by contrastive loss and
self-organizing maps, the distance-weighted contrastive loss (LDWCL) (Appendix 6). For a
single sample, we define the loss function for to be

LRst
= Lobjective(yt, Rst(xt; θRst

)) + α× LDWCL(Rst(xt; θRst
), R(xt; θR)) (1)

LDWCL(Rst , R) = − log
eRst

Ez∼Z

[
e(Rz ,Rst ) × ||st − z||2

] (2)

where yt = (xt+1, xt+2, ..., xt+w), the ground truth values from the time series, α is a learned
hyper-parameter to modulate the relative effects of the two terms, z is a state drawn from
the set of all states Z, is a metric of similarity between Rz and Rst , such as a normalized
dot product or cosine-similarity.

LDWCL forces similar states to be closer and dissimilar states to be separated, causing
the waveforms to cluster in the state space. During each forward propagation step, the
predictions are generated by each forecasting network in the R-block. After the predictions
are generated by each network in the R block, the distance-weighted contrastive loss is
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created by calculating the difference in the predictions between each of the network in the
R-block and network selected by the S block, and weighting it by Euclidean distance of the
network and the selected sub-network (blue leftwards arrow).

The S block has a separate loss function Ls, contingent on its objective, which is to
predict the spatial state occupied by the next time step. It can be conceptualized as the
distance between S block prediction of the best state and the network in the R block with
the lowest error with respect to yt (green leftwards arrow):

Ls = ∥S(xt)− argmin
st

L(Rst(xt))∥2 (3)

While an L1 or L2 norm may better capture the information about the density of the
spatial networks, in practice it may not provide a sufficient gradient for S to learn well
(Appendix 6). Early in learning, when the sub-networks in the R-matrix perform poorly,
S displays highly unstable dynamics, which in turn hinders R-block learning. Rather than
training S to directly maximize the spatial density, we can improve stability by treating
the objective as a classification problem and minimize the negative log likelihood (details
in Appendix 6).

The full training algorithm is provided in Algorithm 1.

3.4. Ensemble Weight Sharing

Inductive transfer learning leverages an inductive bias to improve performance on a tar-
get task and eliminates redundant learning of patterns in data structure (Zhuang et al.
(2021)). To generate sub-networks with weights that represent distinct states rather than
shared structure between states in the time series, we employ an inductive transfer learning
framework. This procedure increases the gap between the sub-network posteriors, which
further enhances the contrastive learning aspect of the network. From an information theo-
retical perspective, the process of learning a shared posterior can be thought of as a lossless
compression of the hidden states by encoding them into a shared embedding. In turn, non-
unique learning of state-independent behavior only needs to take place once rather than
a× b times.

While mode collapse is a known problem, we find that the sharing of weights across the
first few layers leads to robust performance as seen with the paradigm of transfer learning.
This is quite unlike the mode collapse seen in the training of generative adversarial networks.
Without the sharing of weights across the first few layers, we find that learning requires
significantly more samples because the overall structure of the time series must be learned
for each unit in the R block, in addition to learning of the relevant state. In contrast, with
weight sharing, we find that learning of the overall structure of time series can be done
jointly, and the state separation can be learned by each sub-network.

In our implementation of the SpaRTeN framework, this auxiliary network maps the
hidden states of R, which is an h × a × b embedding to a low-dimensional embedding h′,
which is subsequently appended to a dense layer of each sub-network. This procedure
ensures that the shared weights are differentiable during training. After back-propagation,
weights are copied to all sub-networks.
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Algorithm 1 Spatial Projection of Time Series with Temporal Ensembles

Require: {x0, . . . , xT }, where T is the length of the time series. xt represents
{xt−k, . . . , xt} where k is the look-back period, and yt represents the forecast
{xt+1, . . . , xt+w} where w is the forecast window. Assign a width and height to the state
space a, b ∈ Z+. Randomly initialize weights of the R and S block: θR, θS ∼ N(0, 1).
for m = k to m = T − w do
xm ← {xm−k, . . . , xm}
ym ← {xm+1, . . . , xm+w}
ˆ(i, j) = S(xm; θS)

ŷm(i,j) = R(i,j)(xm; θR)∀{i : [0, a), j : [0, b)}
Update R ˆ(i,j)

via gradient descent on LDWCL(ŷm ˆ(i,j)
,ym)

Update S via gradient descent on L(S(xm), argmin
i,j

(L(ŷm(i,j),ym))

end for

4. Experiments

4.1. Results on Synthetic Experiments

For our applications, we focus on three distinct tasks involving high frequency time series
— online forecasting, zero-shot clustering and clinically significant representation learning.
First, we benchmark on standard time series data, using SOTA approaches on standard
datasets. Second, we apply these results to intracranial pressure waveforms. We benchmark
against SOTA online forecasting models with convolutional approaches such as N-Beats
(Oreshkin et al. (2019b)) and attention based methods like Temporal Fusion Transformers
(Lim et al. (2019)) and Autoformers (Wu et al. (2021)). N-Beats is a time series model
that convolves on trends and seasonality. Temporal Fusion Transformers uses a discrete
attention mechanism. Finally, autoformers adds an auto-correlation block to a transformer
base. SpaRTEn outperforms on three out of the four datasets drawn from the UCI repository
with utilizing simple LSTM subnetworks and a latent space dimensionality of 3× 3 (Table
1).

We benchmark against the UCI electricity, UCI traffic dataset, the five-min sub-sampled
realized volatility from the Oxford stocks dataset, and the kaggle retail dataset (Asuncion
and Newman (2007)). We benchmark on long short-term memory networks (LSTMs), N-
Beats, TFTs and Autoformer. We report root mean squared error (RMSE) (Oreshkin et al.
(2019a); Lim et al. (2021)).

RMSE =

∑N
i=1 ||y(i)− ŷ(i)||2

N

Second, we demonstrate that the clusters generated by the S-block of SpaRTEn generally
represent the data better than adjacent algorithms. We demonstrate that SpaRTeN can
generate prototypical waveforms, that can be utilized by K-Nearest Neighbors to perform
state-of-the-art for zero-shot clustering methods. We benchmark on traditional clustering
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Table 1: RMSE of benchmarks on an online forecasting task

Datasets

Model Electricity Traffic Stocks Retail

LSTM 2.93 32.10 0.13 13.76
N-Beats 2.84 3.10 0.10 14.16
TFT 2.49 15.10 0.11 13.87
Autoformer 6.61 3.34 1.24 4.98
SpaRTEn 1.57 1.58 0.67 1.59

techniques such as KNN with random Silhouette score is calculated by

s(i) =
b(i)− a(i)

max{a(i)− b(i)}
(4)

where a(i) is the intra-cluster distance, and b(i) is the mean nearest-cluster difference.
Clusters are assigned by SRTN . Visual representations are the average of all waveforms of
given length k that belong to any given cluster.

Table 2: Silhouette score of benchmarks on an unsupervised clustering task

Datasets

Model Electricity Traffic Stocks Retail

Random 0.023 0.22 0.012 0.011
Spectral 0.005 0.09 0.005 0.002
GMM 0.024 0.12 0.011 0.010
SpaRTEn 0.028 0.24 0.026 0.027

4.2. Ablation Studies

In this section, we run four different ablation studies. The baseline model contains a latent
space of dimension 3 × 3, a negative log-likelihood loss, an S-Block and an R-Block. We
perform three distinct experiments.

First, we ablate the S-Block. Ablation of the S-Block significantly decreases the perfor-
mance of the model. We anticipate this is because the spread of patterns included in the
time series analysis are subject to oversquashing (Alon and Yahav (2020)).

Second, we over-parameterize the latent space to a 10× 10. We show that this slightly
decreases the performance, but not by much in the online forecasting task across three of the
four datasets. Because there are no constraints on how many coordinates the network needs
to use, this may simply be the result of self-regularization where the network voluntarily
learns a representation that under-utilizes an over-parameterized space. Nevertheless, over-
specification of the latent space harms the clustering ability of SpaRTEn.

Third, we ablate the distance-weighted contrastive loss. The distance-weighted con-
trastive loss was implemented to improve clustering. We see that eliminating the distance-
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weighted contrastive loss can reduce online forecasting performance and clustering perfor-
mance.

Table 3: Ablation study on benchmarked datasets
Dataset

UCI Electricity UCI Traffic Oxford Stocks Retail

Ablation RMSE Silhouette RMSE Silhouette RMSE Silhouette RMSE Silhouette
S-block 2.93 X 32.10 X 0.13 X 13.76 X
10× 10 2.58 0.019 1.58 0.15 0.57 0.005 1.61 0.001
DWCL 2.57 0.024 1.62 0.17 0.60 0.012 1.60 0.013
None 1.58 0.028 1.58 0.24 0.67 0.026 1.59 0.027

Table 4: Demographic details of 344 patients
Demographic Value (95% CI)

% Female 42.96%
Age 53.22 (31.9, 74.5)

% Medicaid 9.14%
% Non-White 31.9%

5. Time is brain: Representation Learning of Intracranial Pressure
Waveforms

5.1. Evaluation Approach/Study Design

In this section, we assess SpaRTeN’s ability to learn a set of representations of a realistic
waveform by first benchmarking it on standard time series datasets, and then demonstrating
its practical application on intracranial pressure wave-forms from the MIMIC-III data-set.
A good interpretable representation of states should be a) able to demonstrate distinct
properties within each state, and b) cluster wave-forms within a given time series into a
given state.

In order to compare the distinct properties of each state and demonstrate the ability
to cluster wave-forms within a given state, we train SpaRTeN with a latent state space
of 3 × 3 on intracranial pressure wave-forms across 4000 time steps to generate a set of 9
distinct classes (Figure 2a). We visualize the aggregate of these in Figure 2b. We optimize
hyper-parameters with a grid-search conducted over the state-space and learning rates for
both the R and S-blocks, as well as α, and the depth and width of the LSTM sub-networks.
We train a KNN with k = 9 on the 9 (3 × 3 = 9) distinct waveforms aggregated by state,
and evaluate its ability to cluster all the waveforms on the dataset using a silhouette score
(Rousseeuw (1987)), which is widely used to evaluate the goodness of a clustering technique
and report the results. We conduct 10 bootstraps for this experiment and report 95%
confidence intervals.

To highlight the application of SpaRTeN to medical data, we use the MIMIC waveform
database to benchmark performance on intracranial pressure (Table 1). The MIMIC wave-
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form database is a dataset consisting of 22,317 waveform records for 10,282 ICU patients,
which typically include ECG, arterial blood pressure, respiration and polyplethysmography
(Moody et al.). We provide benchmarks on the 344 patients with identified coded intracra-
nial pressure waveforms. This work is mostly methods-based and therefore future work will
look at more careful cohort selection and identification of underlying pathophysiology of
intracranial hypertension such as stroke, obesity, and pregnancy.

5.2. Data Extraction

We extracted 4,000 timepoints for members of the cohort, with a sampling frequency of 125
Hz. Extraction is conducted via a custom data querying method that excludes waveforms
with fewer than 4,000 time points.

5.3. Feature Choices

We extract intracranial pressure as a use case because understanding various physiological
processes associated intracranial hyper- and hypo-tension remain controversial (Hawryluk
et al. (2022)). Further work into learning the role of cerebral perfusion pressure can guide
discussion about indications for monitoring, treatment thresholds, and management of in-
tracranial hypertension.

5.4. Results on Intracranial Pressure

We compare the SpaRTeN to other modes of unsupervised clustering, including k-means
applied random sampling (Pedregosa et al. (2011)) as a baseline; spectral clustering (Hochre-
iter et al. (2010)), which imposes a graph-based approach to clustering and is typically used
for sequential genomic data; and, a Gaussian mixture model. We show that the silhouette
score for the SpaRTeN representations far outperforms other modes of clustering, and is
robust to different sample sizes. Furthermore, SpaRTeN approaches the bounds set by a
KNN trained on all the data, which is 0.422 (0.418, 0.424).

Table 5: Silhouette Score of representations of Intracranial Pressure Waveforms

Sample Size

Model 10 25 100 400

Spectral 0.131 ±0.023 0.165 ±0.008 0.109 ±0.007 0.156 ±0.003
Random 0.366 ±0.018 0.275 ±0.007 0.252 ±0.005 0.276 ±0.002
GMM 0.341 ±0.019 0.345 ±0.005 0.329 ±0.004 0.344 ±0.003
SpaRTeN 0.415 ±0.020 0.422 ±0.006 0.385 ±0.005 0.405 ±0.002

Second, upon visual inspection of the generated waveform patterns by clinicians with
expertise in ICU care, distinct patterns emerge (Figure 2) Future work should ensure con-
sistency via empirical clinical validation.

At point (0,0), the waveform is both stable and relatively constant. This indicates that
the intracranial pressure does not require some form of intervention, and is a strong baseline
for what non-pathological activity should look like. At point (0, 1) we start seeing evidence
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Figure 2: Qualitatively and quantitatively evaluating model representations. a)
Raw waveforms of Intra-cranial Pressure with high intra-sample variability. b)
Bootstrapped (10x) results of silhouette score across different sized samples
demonstrates that SpaRTeN outperforms other clustering methods. 95% Con-
fidence intervals reported in the figure, but may be too small to see. c) Clusters
generated by SpaRTeN represent distinct trends within the time series. d) Clini-
cal interpretation of each of the waveforms.

of pathological neuro-vascular activity - the mean change in the intracranial pressure is
relatively small, unlike the variation, which is relatively large. ICP variability is part of
the response to injuries like trauma (Svedung Wettervik et al. (2020)). Following trauma,
for example, high intracranial pressure variability is a physiological response, and suggests
that some of the compensatory mechanisms are starting to be hyper-reactive. In contrast,
at point (2, 0), intracranial pressure waveform has a U-shaped, which indicates that the net
change in the intracranial pressure over this time series is zero. However, the visibly slower
dip and return to baseline suggests a relatively slow, hypo-reactive compensatory response
to changes in intracranial pressure. A hypo-reactive intracranial pressure is associated with
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worse performance on the Glasgow Coma Scale (Tian et al. (2013)). A physician may try
to shift a patient’s state from (0, 2) to (0, 1) in order to improve outcomes by increasing the
tone of the sympathetic nervous system (Schmidt et al. (2018)).

In the second row, we start to see acute cerebro-vascular dysregulation. At point (1, 1),
we see that the there are signs of instability, followed by a complete over-compensation,
and an acute drop in the intracranial pressure. A patient in this state may warrant a CT
scan to detect an early aneurysmal rupture. At point (1,1) and (1, 2), we see that there
is complete dysregulation of the brain’s vasculature with dramatic decreases and increases
in intracranial pressure, respectively. These two waveforms are adjacent to each other and
highlight intracranial pressure waveforms in a pathological state. In the context of waveform
(1, 2), we might clinically witness a hemorrhage. A hemorrhage can increase local volume
of blood, and decrease intracranial pressure. If a patient is in a hemorrhagic state such
as an intracranial hemorrhage, interventions include endotracheal intubation to protect the
airway, blood pressure management and hypertonic saline to reduce intracranial pressure
(Caceres and Goldstein (2012)). In (1, 1), we see a rapid decrease in intracranial pressure
as might be expected following treatment such as placement of an extra-ventricular drain
(Kramer (2021)). Notably, the waveform in (1, 1) is closer to the baseline state than that in
(1, 2), which makes sense because (1, 1) involves a treatment designed to restore physiologic
state.

The bottom row, namely (2, 0) and (2, 1) represents decompensation but more chron-
ically than acutely as was observed with (1, 1) and (1, 2). In (2, 0), we could see what
chronic hypotension could look like, whereas in (2, 1), we might see what chronic hyperten-
sion would look like. Intracranial hypotension is associated with headaches (Luetzen et al.
(2021)), and can either be acute or chronic. In (2, 1) we notice that there is some form of
chronic hypertension, which can be treated clinically with a diuretic drug. In (2, 2), we see
instability with respect to intracranial pressure, which can be a precursor to (1, 2) and (1, 1)
(Oernbo et al. (2022)). These analyses demonstrate that SpaRTEn is able to decipher clini-
cally meaningful states. Moreover, utilizing these state analyses to better disentangle states
can improve the understanding of clinical treatment and associated outcomes (Samartsidis
et al. (2018)).

5.5. Ablation Studies

We run three different ablation studies. Ablation of the S-Block, overparameterization of
the latent space to a 10 × 10 space and ablation of the distance weighted contrastive loss
all result in decreased performance. This is consistent with the ablation studies carried out
on other datasets in Section 4.2.

Table 6: Ablation studies on ICU dataset
Ablation Experiment RMSE Silhouette Score

S-Block 5.58 X
10 ×10 7.59 0.137
DWCL 5.71 0.273
None 5.41 0.401
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6. Discussion

We introduce a novel method called SpaRTeN (Spatially Resolved Temporal Networks) for
discrete representations of time series via unsupervised learning and a forecasting objec-
tive. SpaRTeN stores models rather than samples in an embedding space, which allows
for rapid interpretable learning of structured representations in high frequency time series.
We show that it can be broadly applied to online forecasting and clustering. We antici-
pate that improvements in size, algorithmic and optimization details will only continue to
further improve upon the SpaRTeN framework. Finally, we further intend to demonstrate
the applicability of this model architecture to real-time, online clinical decision support in
situations like the decoding states for patients in the ICU. Thus, the SpaRTeN framework
can be generalized to different network blocks, optimization techniques and use cases. It
takes a key step towards the goal of generating individualized state representations with
online learning.

Analyses performed by trained clinicians demonstrate that SpaRTEn is able to decipher
clinically meaningful states. Moreover, utilizing these state analyses to better disentan-
gle states can improve the understanding of clinical treatment and associated outcomes
(Samartsidis et al. (2018)).

Limitations SpaRTeN is a novel min-max framework for decoding states, and has many
of the same advantages and disadvantages as other min-max frameworks. Without suffi-
cient gradient-based optimizations like smoothing and replacing density-based losses with
negative log-likelihood losses, the gradients and states learned by SpaRTeN can be highly
unstable (Appendix D). Subsequently, a collapse in the gradients on one of the blocks can
be highly detrimental to other blocks.

Second, many datasets, especially in the ICU contain multi-modal sources of informa-
tion. Currently, models like temporal fusion transforms can better account for multi-modal
trends in time series and combine categorical with continuous variables. We anticipate
further development of the SpaRTeN framework by including R-blocks that are capable of
accounting for different variable types and data modalities may further enhance the ability
of SpaRTeN to generate multi-modal archetype waveforms, which can be subsequently used
to qualitatively evaluate changing states in the clinical setting.

Third, we selected 2D geometry because it was computationally tractable in terms of
the distance-weighted contrastive loss, and interpretable in the ICU setting. Ablation of the
the distance-weighted contrastive loss leads to poorer representation learning and clustering.
Future work could explore higher-dimensional latent spaces and hyperbolic geometry.

Acknowledgments

Computational support was provided by the team at the High-Performance Computing
Cluster (HPCC) Minerva at the Icahn School of Medicine at Mount Sinai.

References

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical
implications. arXiv preprint arXiv:2006.05205, 2020.

14



Temporal Representation Learning of Intracranial Pressure

Samaneh Aminikhanghahi and Diane Cook. A survey of methods for time series change
point detection, 2017.

Arthur Asuncion and David Newman. Uci machine learning repository, 2007.

Ane Blazquez-Garcia and Angel Conde. A review on outlier/anomaly detection in time
series data, 2022.

J Alfredo Caceres and Joshua N Goldstein. Intracranial hemorrhage. Emergency medicine
clinics of North America, 30(3):771–794, 2012.
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Appendix A. Mathematical Notation

Table 7: Mathematical Notation
Symbol Meaning

xt A time series from t− k to t. {xt−k, xt−k+1, . . . , xt}. k is the look-back period.
yt A time series from t+ 1 to t+ w. {xt+1, . . . xt+w}. w is the forecast window.
st The state of a time series at time-point t.

Corresponds to (i, j), a coordinate within the latent space.
Within S, the range of possible states

ŷts Prediction of yt given state s
T Total length of time series.
i The x-coordinate of a state. Constraint: i < a
j The y-coordinate of a state. Constraint: i < b
Z The latent space of states. Constrained to {Z2+ : [0, a), [0, b)}
a The width of the latent space.
b The height of the latent space.
fS fS : Xt → st. The S-block.
fR fR : (s,Xt)→ yt;∀s ∈ S. The R-Block.
Rs A network in the R-block. Maps Xt → ŷts given s
θf Parameter of function f .
L Loss function.

Appendix B. Model Architecture and Training

We employ a model architecture that utilizes the SpaRTeN framework. It consists of an S
block and an R block with a spatial embedding space of Z2+ : [0, a), [0, b) (Figure 1).
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Each step in training occurs in three progressive steps during forward propagation and
two steps during back-propagation (Figure 1). During forward propagation, the R block
maps an input time series to a set of forecasts a× b (Step 1 - Blue). The S block takes the
input time series and generates a spatial density over the states (Step 1 - Green).

The second step is that the spatial densities corresponding to the predicted state over
the S block is used to select the network in the R block to predict the time steps over the
look-forward period (Step 2 - Blue, Green).

During backpropagation, there are two distinct loss functions that must be accounted
for. First, the S block loss can be calculated by generating all the predictions in networks in
the R blocks (Step 3 - Green). The difference between S-block prediction of the best state
and the network in the R block with the lowest error with respect to the true future values
(in the case of online forecasting), can be calculated (LS), and the subsequently it can be
either treated as a classification task with cross-entropy loss or a mean-squared error loss
with the S block trying to approximate the density generated by the R networks.

Second, the R block loss can be calculated by utilizing the predictions generated by
all the networks, and the predictions generated by the correct network, and weighting
those such that networks with closer spatial distances to the correct network should have
closer predictions, whereas, networks that are further away from the correct network have
more leeway and should have further estimates (Step 3 - Blue). We can create inductive
biases across the ensemble via weight-sharing across the initial layers (Appendix ??), which
improves performance (Appendix ??)

For the R-Block, we minimize sMAPE (Symmetric Mean Absolute Percentage Error)
as the primary objective in a forecasting task:

sMAPE =
1

N

N∑
i=1

2× |yi − ŷi|
|yi|+ |ŷi|

(5)

where N is the number of examples used for training. sMAPE is a metric that has been
typically reported in the past with competitions like the M4 time series forecasting compe-
tition Makridakis et al. (2018). For the S-Block, we utilize a standard cross-entropy loss for
multi-class classification.

The goal of the S-block is to translate a high-frequency time series into a spatial co-
ordinate system with a dimensionality of a, b. The flexibility of fully connected networks
in conjunction with spatial constraints imposed by convolutional filters biases the network
towards a spatial representation of the temporal networks.

The S-block consists of four key layers, a 1D-CNN, a fully connected network layer with
(a + 2) × (b + 2) number of units, a layer that reshapes the fully connected network block
into an (a + 2) × (b + 2) rectangle, followed by a 3 × 3 convolution with a stride length of
2, to produce an ultimate output layer of dimension ab (Figure 3).

A discrete state space was chosen to improve the interpretability of the model sub-
networks to produce meaningful results. However, future work may replace the discrete
state space output with a representation of a density distribution or a continuous vector
space.

In order to compare the distinct properties of each state and demonstrate the ability to
cluster waveforms within a given state, we train the S-Block with a latent state space of
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Figure 3: Network architecture of the S-Block. The S-block consists of four key layers, a
1D-CNN, a fully connected network layer with (a+ 2)× (b+ 2) number of units,
a layer that reshapes the fully connected network block into an (a+ 2)× (b+ 2)
rectangle, followed by a 3 × 3 convolution with a stride length of 2, to produce
an ultimate output layer of dimension width length.

3× 3. We train a KNN with k = 9 on the 9 (3× 3 = 9) distinct waveforms aggregated by
state, and evaluate its ability to cluster all the waveforms on the dataset using a silhouette
score, which is widely used to evaluate the goodness of a clustering technique. SpaRTEn
outperforms all other methods used to cluster time series on all four datasets.

We used datasets from the UCI repository: Electricity, Traffic, Oxford Stocks, and
Retail. We utilized an 80-20 train-test split. We included learning rates from 1 × 10−4 to
1.0 for the grid-search, iterating by a factor of 2. For the intracranial pressure waveforms,
we utilize a time series of length 4,000 with an equivalent train-test ratio of 80-20.

Appendix C. Distance-Weighted Contrastive Loss

We adapt contrastive loss and self-organizing maps in the second term to the distance-
weighted contrastive loss (DWCL). For a single sample,

LDWCL(Rst , R) = − log
eRst

Ez∼Z

[
esim(Rz ,Rst ) × ||st − z||2

] (6)

where z is a state drawn from the set of all states Z, sim is a metric of similarity between
Rz and Rst , such as a normalized dot product or cosine-similarity.

This loss pushes sub-networks to have distinct predictions. The distance-weighted con-
trastive loss for univariate time series learns similar and dissimilar pairs in a self-supervised
manner. During each forward propagation step, the predictions are generated by each fore-
casting network in the R-block. After the predictions are generated by each network in the
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Figure 4: Loss calculations for the R-matrix. (a) Is the calculation of the R-matrix pre-
dictions for the next time step. (b) S-Block predicts the appropriate state for
the next time step. (c) The similarity block calculates similarity between the
chosen state prediction and the other states. (d) The distance block calculates
the distance between each other state and the selected substates. The loss block
is the dot product of the distance and similarity block. The loss block is summed
to produce the final loss value

R block, the distance-weighted contrastive loss is created by calculating the difference in
the predictions between each of the network in the R-block and network selected by the S
block, and weighting it by Euclidean distance of the network and the selected sub-network.
Similar pairs can be thought of networks that are closer to the selected network in euclidean
space, and dissimilar pairs are those that are further apart in Euclidean space.

The overall computational cost is O(c(f, b) + (K − 1)× c(f)), where c(f) is the cost of
forward propagating, and c(f, b) is the cost of forward and back-propagating, and K is the
total number of blocks. Thus, computational cost scales with the number of sub-networks.

The general idea of contrastive loss is to preserve neighborhood relationships between
data points by minimizing the distance between similar points and maximizing the distance
between points of different classes Hadsell et al. (2006). The general form of the contrastive
loss function is the following:

Lcontrastive(xi, xj ; θ) =
1[yi = yj ]

2
d(fθ(xi), fθ(j))+

1[yi ̸= yj ]

2
max(0, ϵ−d(fθ(xi), fθ(xj)) (7)

where xi and xj are two distinct samples, f is a function that maps x → Rk, an
embedding of dimensionality k, d is a distance metric, and ϵ is the distance to the margin.
In multi-class classification problems, this can be further extended as a classification problem
with K + 1 categories He et al. (2019).

Lq = − log
esim(fθ(xt),fθ(xj))/τ∑N
k=1 e

sim(fθ(xk),fθ(xj))/τ
(8)
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where sim(f(xi), f(xj)) is a metric of similarity between f(xi) and f(xj) and τ is the
normalization factor.

We can extend this to forecasting where the positive example can be thought of as
the selected sub-network, whereas the negative examples are the irrelevant sub-networks.
Finally, we add a normalized distance metric, to ensure sub-networks that are closer in
euclidean space have closer representations.

LDWCL(Ri,j , R) = − log
eRi,j

Ex,y∼Z2+

[
esim(Rx,y ,Ri,j) ×

√
(x−i)2+(y−j)2∑Z2+

x,y (x−i)2+(y−j)2

]
We visualize this further in Figure 4.

Appendix D. Encouraging smoothness over time

The goal is to predict the development of a time series in an interpretable way. This
means that we may have a tradeoff between stable network dynamics and representation
of a ground truth density. Learning a probabilistic model in a high-dimensional continuous
space can be challenging, which necessitates the use of reductionist frameworks to improve
interpretability.

Previous work in Markov chain modeling penalized state transitions via an additional
smoothness term Fortuin et al. (2018). Other methods have focused on incorporating quan-
tile outputs to maximize the signal-to-noise ratio Lim et al. (2021).

We find that by converting an L2-norm-based loss function to cross-entropy loss, we can
improve the stability of both the S-block representations, and by extension, the R-block
ensemble:

LS = −
Z2+:[a,b]∑

i,j

argmin
i,j

(Ri,j(xt)− xt+1)
2 × log σ(S(xt)) (9)

where Z2+ is a discrete two-dimensional space of integers in [a, b], the sum is over all the
coordinates in the space, Ri,j(xt) is the prediction of the next time step by the network
based on the previous time step, xt+1 is the next step. σ represents soft-max function,
and S(xt) is the predicted state of the next time step. If S fails to provide strong initial
gradients, as in the case with L2-norm, then the instability of the network prevents a single
sub-network from learning the characteristics of a given state (Figure 5). In turn, this causes
the S-block to be increasingly volatile, which can in turn further destabilize the R-block.
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Figure 5: Losses and associated states for L2-norm and negative log-likelihood. (a) L2-norm
loss is significantly smaller and signal-to-noise ratio is smaller than (c) negative
log likelihood (NLL) loss. The corresponding states calculated by the (b) L2 loss
are far more unstable than the states calculated by the (d) negative log likelihood
S-block.
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