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Abstract

The electrocardiogram (ECG) remains the cornerstone of diagnosis in cardiology where,
pathologies uniquely impact its appearance, permitting the identification of underlying
electrical or structural abnormalities. Notably, multiple deep learning approaches have
demonstrated that disease prediction could be performed with high accuracy using ECG
waveforms. However, this signal-rich modality has also demonstrated the potential to be
predictive of a patient’s private attributes such as biological sex and age. More importantly,
recent research has demonstrated that many medical data modalities could allow patient
re-identification with only the modality of interest despite anonymization through current
paradigms, raising important privacy concerns. In this paper, we propose a novel approach
to anonymize the ECG waveforms themselves while maximizing the privacy-utility trade-
off. We describe PrivECG1, a generative adversarial network (GAN) framework capable
of privatizing 12-lead ECGs while conserving their disease-descriptive features. PrivECG
significantly decreases patient validation performances by targeting sex-linked features. Our
approach reduces sex prediction accuracy from 0.876 to near-random 0.529, by permitting
greater variability of the ECG’s R-wave morphology, as well as bringing the equal error
rate (EER) from 0.098 to 0.251 on individual validation tasks. Moreover, the regenerated
ECGs maintain a majority of their disease-predicting potential, with an F1 score of 0.885
from the baseline’s 0.931 on a multilabel disease prediction task. We further demonstrate
that reintroducing sex-linked information downstream in the network allows recuperating
performances with an F1 score of 0.893 proving our loss of performance is due to the
privatization of the sex-linked features, as well as serves as a disambiguation tool to evaluate
the impact of sex information on prediction performances. Our results suggest that our
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approach could allow improved anonymization of a large ECG database in minutes without
strongly impacting downstream clinically-relevant tasks in a task-independent manner.

1. Introduction

The electrocardiogram (ECG) monitors the heart’s electrical activity by measuring the
voltage changes across the cardiac muscle. The typical clinical ECG uses 12 electrodes
placed on various body sections, including the chest and limbs. Each of these electrodes
provides a unique view of the heart’s electrical activity. When combined, these 12 leads
offer a 3-dimensional representation of the heart’s depolarization patterns. This allows a
more comprehensive understanding of the heart’s activity, essential for accurate diagnosis
and treatment of common cardiovascular conditions such as atrial fibrillation or myocardial
infarction (“heart attack”). The standard healthy ECG waveform contains a distinctive
repeating pattern of P, QRS, and T waves, each representing a key stage in the cardiac
cycle of a complete heartbeat. Notably, the R-wave is often the most salient as it represents
the depolarization of the ventricles, the bulk of the heart’s muscle mass (Becker, 2006)
(Figure 1).

Anomalies in the expected ECG waveform can help in identifying underlying cardi-
ological pathologies such as infarction or arrhythmia (Begg et al., 2016) and is often the
preferred investigation approach due to its cost-effectiveness and non-invasiveness (Saunders
and Lankiewicz, 2019). Thus, the ECG became ubiquitous in cardiac pathology diagnosis
and monitoring in the United States (Kligfield et al., 2007). Because of this, large public
datasets and challenges emerged quickly, such as the PhysioNet/CinC Challenge in 2000
(Goldberger et al., 2000) fostering the rapid evolution of ECG-based predicting algorithms
(Somani et al., 2021). Current architectures generally rely on convolution neural networks
(CNN) and are occasionally reported as capable of outperforming medical expert electro-
physiologists on certain disease-predictive tasks (Hannun et al., 2019; Hughes et al., 2021).

However, with the rising interest in using ECG data as a biometric authentication
modality (Melzi et al., 2022) and in medical data-sharing (Flanagin et al., 2022), a growing
emphasis has been put on mitigating privacy concerns (Murdoch, 2021). Indeed, although
difficult for the naked eye, it has been shown that private attributes such as biological sex
and age could be accurately inferred from ECGs using deep learning approaches (Attia
et al., 2019). Thus, unprotected data could potentially lead to a breach of confidentiality
and allow external agents to identify the patient’s defining characteristics from only an
ECG waveform. As underlined by Kaissis et al. (2020), current anonymization strategies
targeting metadata might not be sufficient to prevent deep learning models from overcoming
current anonymization approaches and re-identifying a patient’s identity from the modality
of interest itself (X-ray images, ECG waveforms, biological laboratory results). In fact, it has
been reported that private data-mining companies have focused on building re-identifying
models using deep learning models (Tanner, 2017). In the literature, examples such as
Packhäuser et al. (2022) have demonstrated that levels of re-identification could reach an
impressive 95% on cohorts of chest X-rays despite the anonymization of the data. In another
study, Schwarz et al. (2019) were able to recreate and re-associate pictures of faces with only
cranial MRI data with an accuracy of 83%. Additionally, a recent paper by Ghazarian et al.
(2022) explored the ability to predict patient ID from their database using ECG waveforms
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and a CNN with output neurons corresponding to each patient. Their results demonstrated
that re-identification achieved an accuracy of 99.7%. Finally, studies, such as Sweeney
et al. (2017), have stated that even the Health Insurance Portability and Accountability Act
(HIPAA) Safe Harbour standards might not be sufficient to hinder re-identification attacks.
These examples thus underlie the dire importance of going beyond current anonymization
paradigms and proposing easy-to-implement and highly private approaches that transform
the data itself when handling and sharing healthcare-derived data.

Figure 1: Differences in the ECG voltage for one heartbeat between the average male and
female.

Generalizable Insights about Machine Learning in the Context of Healthcare

As the private sector increasingly seeks to employ re-identification strategies, and health
insurance companies view such data as a valuable target, we contend that enhancing health-
care legislation to prioritize improved anonymization methods is essential, given the insuf-
ficiency of current approaches (Kaissis et al., 2020). However, as research on deep learning
strategies for privacy and medical data remains scarce, we believe that this paper opens the
door to modality-specific anonymization strategies that allow the sharing of private health-
care data while retaining the utility of the data itself. Moreover, we believe that sharing
these findings will establish a foundation for both healthcare professionals and computer
scientists to collaboratively foster enhanced patient data anonymization.

Our proposed approach constructs a generative adversarial network (GAN)-based and
differs from past works by proposing for the first time a flexible ECG-focused privatization
approach that is agnostic to the downstream task.

• We demonstrate for the first time that clinical 12-lead ECG data could be used for re-
identification of patients with a high fidelity regardless of disease status in a database-
independent manner with a siamese network.

• We propose a novel reconstruction loss, MSEECG, that leverages R-wave morpholog-
ical alterations to induce sex-ambiguity.

• We demonstrate that GAN-based approach can increase privacy levels on ECG wave-
forms while maintaining high levels of utility.
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• We present novel morphological analysis methods able to investigate ECGmorphology.

• We demonstrate that sex information can be reinserted downstream of networks to
both validate our method, but also as a potential tool to investigate the impact of
sex-linked features on deep learning models.

2. Related Work

Although nascent, the field of privacy has begun to tackle ECG data. For example, Son et al.
(2017) proposed to use a wearable sensor connected to a distant analysis server and induce
privacy through a public key cryptosystem and signal scrambling. More recently, Noh et al.
(2022) approached the problem by investigating so-called fiducial points representing key
ECG features such as R-wave amplitude or the interval between the Q-wave and the T-wave
(QT interval) and identified 9 that didn’t induce privacy leakage, in other words, didn’t
yield any information about the private attribute of the individuals. They subsequently
used these features for an ECG-based authentication scheme. Also, Yang and Wang (2022)
tackled the ECG privacy issue by generating a novel privacy-preserving data transformation,
the manipulable Haar transform, for wireless body sensors. On the other hand, Kang et al.
(2021) have demonstrated that GAN-based approaches could be used to remove arrhythmia-
linked features from ECG while preserving patient-defining characteristics on ambulatory
ECGs to create biometric waveforms without apparent pathologies. Nevertheless, these
methods primarily emphasize utilizing ECG as a biometric modality rather than a medical
diagnostic instrument, and they seldom consider the comprehensive 12-lead decomposition
employed in clinical settings. Consequently, these approaches do not aim to optimize the
privacy-utility balance within a cardiological context.

In parallel, the field of privacy has progressed in the area of automatic speech recognition.
Indeed, research groups have employed generative adversarial networks (Goodfellow et al.,
2014) to train a generator able to regenerate a voice-derived spectrogram while minimizing
the probability of a discriminator network to identify the speaker’s sex (Sisman et al., 2021;
Nelus and Martin, 2019; Stoidis and Cavallaro, 2022). However, these approaches often train
on the real component of the short-time Fourier transform of the original voice, inducing
potential data loss. Nonetheless, various groups demonstrated that these approaches could
achieve high levels of anonymity while optimizing the trade-off with utility, here measured
as an ability to identify the word pronounced in the resulting signal (Stoidis and Cavallaro,
2022; Ericsson et al., 2020).

3. Methods

3.1. Network architectures

The GAN is a generative model trained by a two-player minimax game that learns to
generate new data from sample data. The GAN is composed of two models: a generator
G and a discriminator D. In the proposed architecture, D takes the shape of a 1D CNN.
Its task is to predict whether the input ECG belongs to a biological male or female, while
G, a U-Net (Ronneberger et al., 2015), takes a sex-defined ECG E and learns to remove
or obscure the sex-defining features to generate E′ rendering it sex ambiguous. To improve
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ambiguity in the generated E′, a small Gaussian noise Z ∼ N (0, 0.1) was added to the
bottleneck (Figure 2).

Figure 2: Architecture of the U-Net generator (top) and discriminator (bottom).

3.2. Generative adversarial training

Each ECG E is paired with its known private attribute, in this case, biological sex, in
the label vector y. To generate a private sex target vector yp, we based our approach on
Stoidis and Cavallaro (2022)’s work, where we randomly sampled a Gaussian centred at the
mean between the ground truth sex labels (0,1) with a small variance σ2 of 0.05 such that
yp ∼ N (0.5, 0.05) to promote the attenuation of sex-linked features and the amplification of
sex-ambiguous ones by G. To further maximize sex ambiguity, yp was regenerated at each
training epoch.

The discriminator loss LD can be expressed as the combination of the binary cross-
entropy BCE between original label y and the predicted sex y′ when presented with real
examples E (BCEE) and with the BCE between ambiguous sex label yp and the predicted
sex y′ on generated E′ examples (BCEE′):

LD = BCEE(y, y
′) +BCEE′(yp, y

′) (1)

Thus, the discriminator learns to predict the original sex from the original waveforms
while also predicting yp the sex-ambiguous ECGs.

The generator loss LG is composed of the BCE between the y′ and yp on the generated
E′, plus a variation of the mean squared error loss, we defined as MSEECG. Indeed, as

5



PrivECG: generating private ECG for end-to-end anonymization

described by Carbone et al. (2020), one of the major differences between sexes on ECGs is
the morphology of the R-wave (Figure 1).

Thus, to minimize the penalty attributed to the reconstruction of this region, we weighted
R-wave and non-R-wave regions differently. The R-wave boolean mask maskR was obtained
using Ivaylo I. Christov’s QRS detection algorithm (Christov, 2004), with a ±5 window
around the detection point. The non-R-wave mask maskNR was considered as the inverse
of maskR (Figure 3).

Figure 3: Representation of the placement of maskR and maskNR on the ECG waveform

We modified MSE into MSEECG by separating it into two parts, a weighted non-R-
wave region by a factor λ and an unweighted R-wave region such that:

MSEECG(E,E′) = MSE(E ·maskR, E
′ ·maskR)+MSE(E ·maskNR, E

′ ·maskNR) ·λ (2)

The resulting LG thus can be expressed as:

LG = MSEECG(E,E′) +BCE(yp, y
′) · ϵ (3)

Thus, the generator needs to balance both generating ECGs as close as possible to
the original waveform while being as close as possible to sex-ambiguous. Additionally, ϵ
represents the dis-utility budget in the privacy-utility trade-off as presented by Tripathy
et al. (2019). This value allows us to tune how severely the anonymization needs to be
taken into account compared to the reconstruction quality during training.

Figure 4: Training procedure of PrivECG-λ with components of LG (red) and LD (green).
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3.3. Experimental models

We compare four approaches:

1. PrivECG: The aforementioned approach with the MSEECG replaced by the normal
mean squared error between E and E′ with an ϵ=0.0001. To have a MSE within a
similar range to PrivECG-λ’s for a fair comparison, we multiplied MSE by 100 as
well. This acts as a control for MSEECG.

2. PrivECG-λ: The proposed approach usingMSEECG with a λ=100 and an ϵ=0.0001.

3. GenGAN-ECG: A control approach derived from GenGAN by Stoidis and Cavallaro
(2022). This approach was initially proposed for voice privatization and the original
implementation was defined for spectrograms. We adapted it to our context using
our GAN architecture. This methodology proposes the inclusion of a random vector
Z∼N (0,1) that is inserted at the bottleneck of G as well as modifying the generator’s
loss to LG = MSE(E,E′) +BCE(y′, y) · ϵ.

4. controlGAN: A non-private GAN architecture. In this architecture, G attempts
to recreate an ECG waveform from an input waveform and D attempts to discrim-
inate generated against true waveforms. This allows quantifying the impact of the
noise added by the generative approach and the addition of the random vector at the
bottleneck of G.

All experiments were performed using the Adam optimizer (Gemp, 2019) with its hy-
perparameters set to B1=0.5 and B2=0.99 with a learning rate of 1e-7 for 500 epochs with
mini-batches each containing 64 examples.

3.4. Dataset

We generated 3 distinct datasets from ECGs all obtained from the Montreal Heart Institute
internal database. The first (dataset 1) was used for the training, validation, and testing of
our GAN. Disease prediction included 50,000 10-second 12-lead ECGs with various cardiac
illnesses obtained using the MUSE v9 Cardiology Information System at 250Hz with a unit
voltage of 4.88 microvolts (see Appendix Table A.1). Once acquired, all examples were
filtered using a bandpass filter from 0.1 to 45 Hz, standardized and resample such that each
lead had 500 data points. The dataset was subdivided into balanced training, validation,
and test sets on non-overlapping datasets based on patient sex, age, and diagnosis using
scikit-multilearn’s iterative dataset splitting function in a 0.6/0.2/0.2 split (Szymański and
Kajdanowicz, 2017). We also ensured that patients with repeated ECG did not have ECG
in different stratification to prevent data leakage as well as having a 1:1 female-to-male
ratio. The sex label vector y was encoded from the biological sex such that:

y =

{
0, if female

1, if male

The second dataset (dataset 2) was used to train a siamese network (Koch, 2015) for the
patient verification task. Briefly, this task verifies whether a pair of ECGs originated from
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the same patient. This dataset was composed of 43850 ECGs from 877 distinct patients.
Each patient had 50 ECGs sampled across 15 years. Following the same pre-processing as
dataset 1, it was separated into a training set containing 50 true ECG pairs and 50 false
pairs per patient where the siamese dataset S, produced from the raw dataset of ECG K,
can be described as:

S = {(ECGi, ECGj , zij), (i, j) ∈ K} : zij ∈ {0, 1} (4)

where a pair is considered true if ECGi and ECGj come from the same patient where
zij = 1 and zij = 0 if both ECGs are from different patients making a false pair. The
87700 resulting ECG pairs were subsequently subdivided into train, validation, and test
sets similar to dataset 1.

To investigate disease prediction, we built a third dataset (dataset 3) containing 653 241
ECGS with 6 potential labels: atrial fibrillation, first-degree atrioventricular block, right
bundle branch block, left bundle branch block, infarction and sinus rhythm (see Appendix
Table A.2). Similar to the other datasets, we pretreated and split them into training,
validation, and testing sets. None of the patients had ECGs shared between datasets to
prevent data leakage.

3.5. Evaluation

3.5.1. Metrics

To evaluate this work, we propose three families of metrics, precision metrics, reconstruc-
tion metrics, and privacy metrics. The first set contains performance metrics to evaluate
both sex-predictive and disease-predictive performances: accuracy, F1 score, area under the
precision-recall curve (AUPR) and area under the receiver operating characteristic curve
(AUC-ROC). The later is to facilitate the comparison with previously published studies on
sex prediction from ECG waveforms. Briefly, the value of AUC-ROC ranges from 0 to 1,
where a value under 0.5 indicates a classifier performing worse than “random”, 0.5 indicates
that it ranks a random positive example higher than a random negative example 50% of the
time and 1 indicates perfect discrimination between the classes. Values nearing 1 indicate
a better performance of the classifier. For multilabel disease prediction tasks, we propose
the use of both the F1 score and the AUPR. Briefly, the F1 score represents the harmonic
mean of its precision and recall of the algorithm. On the other hand, the AUPR is obtained
by measuring a classifier’s recall and precision at various thresholds and, similarly to the
AUC-ROC, values close to 1 are favoured.

To evaluate the quality of the reconstruction, we propose a second set of metrics. First,
the root mean squared error (RMSE) represents the standard deviation of the errors or
distances between equivalent points between E and E′. The closer the RMSE is to 0 the
closer E′ is to E.

RMSE(E,E′) =

√∑N
i=1(Ei − E′

i)2

N
(5)

where Ei and E′
i represent the ith position on the original and reconstructed waveform

respectively. Although it theoretically should be optimal to obtain the smallest RMSE pos-
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sible, there remains interest to have some key differences between E and the sex-anonymous
E′.

We also investigate the Fréchet distance (FD) (Godau, 1991) between the E and E′

described as the smallest of the maximum pairwise distances between two curves. Similarly
to RMSE, the closer FD is to 0 the closer E′ is to E.

FD(E,E′) = min

(
max
i∈Q

(
d
(
Ei, E

′
i

)))
, Q = [1, N ] (6)

where d is the Euclidean distance and N is the length of the ECG vector. Similarly to
the analysis of the RMSE, we wish to reproduce an ECG-like waveform with key differences
induced by sex anonymization. Thus, although a low FD is desired, an FD of zero is equally
undesired.

We also propose to evaluate the Pearson correlation coefficient ρ that measures how E
co-varies with E′. The values vary from -1, representing a perfect inverse correlation, and
1 being an ideal correlation.

ρ(E,E′) =

∑N
i=1(Ei − Ē)(E′

i − Ē′)√∑N
i=1(Ei − Ē)2

√∑N
i=1(E

′
i − Ē′)2

(7)

Where Ē and Ē′ represent the mean of the original and reconstructed ECGs respectively.
Again, a value of ρ tending towards 1 is desired for reconstruction, however, we wish to
have sufficient alterations in E′ to yield an imperfect score to permit the inclusion of sex
ambiguity.

Finally, to evaluate the privacy-preserving ability of the experimental models, we propose
employing the equal error rate (EER). The EER defines the set point where the false
acceptance rate (FAR) equals the false rejection rate (FRR). The smaller the EER, the
more secure the biometric modality, as fewer misidentifications occur. A highly private
modality will have an EER approaching 50% where the likelihood of performing a FAR or
FRR is equal.

3.5.2. Evaluation networks

Following the evaluation of the reconstruction from PrivECG and the other comparative
approaches, three distinct networks were needed. A 1D-ResNet-50 (He et al., 2015) was
trained to predict biological sex from ECG to validate that dataset 1 contained sex-linked
information. A second 1D-ResNet-50 was trained on disease prediction to validate the
generated data’s ability to generate useful waveforms for disease prediction on dataset 3.
To ensure the best predictions, this network was trained using focal loss citep( with a
gamma of 2 (Lin et al., 2017). To allow a fair comparison of downstream analysis, the
precise architecture was the same as for the Re-insertion of sex information.

To evaluate the privacy and disease-prediction ability of the regenerated sex-ambiguous
ECG, we trained a siamese network based on two 1D-ResNet-50 feature extractors. The
network was trained, validated, and tested on dataset 2. The task of the siamese network
(Koch, 2015) was to validate if two ECGs instances came from the same patient to measure
the final EER (Figure 5). Results presented are on the respective transformed test sets
modified by the trained generators from each method tested.
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Figure 5: The sex-predicting (left) and disease-predicting (center) networks are both based
on a 1D-ResNet-50 architecture trained on datasets 1 and 3 respectively. The
siamese network (right) or the patient validation task trained on dataset 2.

3.5.3. R-wave analysis

The R-wave represents the depolarization of the heart’s ventricle and, as ventricle size
varies across males and females, it is one of the most apparent sex-specific morphological
distinctions on the ECG waveform (Moss, 2010). To validate the baseline variation in
R-wave morphologies between biological sexes within our dataset we used the Ivaylo I.
Christov’s QRS detection algorithm (Christov, 2004) and measured their height using scipy’s
find_peak function (Virtanen et al., 2020) in combination with Makowski et al. (2021)’s
NeuroKit 2.0 ecg delineate function to find the start and end of the R-wave. These were
subsequently used to measure both the average amplitude and width of the baseline ECG
cohort.

To evaluate the changes in R-wave morphology in the generated ECGs, we also localized
the R-wave using the Ivaylo I. Christov’s QRS detection algorithm (Christov, 2004). We
calculated two metrics, the first being the average standard variation in R-wave amplitude
within a single ECG waveform: σR−wave. A larger σR−wave represents a large variation in
amplitudes across the ECG while a smaller value represents more consistent amplitudes. To
better identify differences in R-wave amplitude from the original waveform, we propose the
µ∆R−wave metric which can be measured as the average mean difference from M ECG with
P R peaks where Ag and Ao represent the peak’s amplitude in the generated and original
waveform respectively.

µ∆R−wave =
1

M

M∑
i=1

1

P

P∑
j=1

(Agj −Aoj) (8)

A smaller value for µ∆R−wave thus represents a waveform with R-wave amplitude more
similar to the original waveform.

To yield a non-generative R-wave normalized baseline, we also propose to normalize the
per-lead R-wave amplitude using the per-lead gender-balanced average amplitude.

3.5.4. Re-insertion of sex information

To validate that the loss of performance observed from using the PrivECG-derived data
resulted from the absence of the sex-linked features and not the generative process itself, we
reinserted the sex information at the level of the dense layers following the 1D-ResNet-50
block. The output of the network was concatenated with a one-hot encoded vector of the

10



PrivECG: generating private ECG for end-to-end anonymization

sex. To prevent gradient explosion, the positive class was set to 0.8 while the negative class
was set to 0.1. For the control approaches, the same architecture was used, whereby the
entry tensor to the dense layer was simply the 2048 features output of the 1D-ResNet-50.
The network was also trained using focal loss (Lin et al., 2017) with a gamma of 2 (Figure
6).

Figure 6: Architecture for evaluating the sex information re-insertion. The blue tensor
represents the 1D-ResNet-50 output vector to which we combine the sex-label
vector. No concatenation is performed for controls.

4. Results

4.1. Evaluating if sex-linked features were preserved in ECG of patients
suffering from multiple illnesses

Works such as Attia et al. (2019) demonstrated that 12-lead ECG waveforms permitted
the accurate prediction of the patient’s sex. We set out to confirm these results in our
dataset as it is composed of a wide range of diseased waveforms thus potentially altering
the performance on such a task. We evaluated the ability to predict sex using a 1D-
ResNet-50 (He et al., 2015). We compared our results to the declared AUC-ROC value
from the original publication, as neither the trained model nor the data were available.
From our results, we achieved an AUC-ROC of 0.882 ± 0.022 while Attia et al. (2019)
were able to achieve results of 0.969. Thus, although sex seems more difficult to predict in
our database, potentially due to our different disease distribution, sex prediction still yields
high algorithmic performance and thus permitted us to move forward with our generative
approach.

4.2. Evaluating the sex-linked morphological R-wave differences in our dataset

To ensure that R-wave differences indeed existed between biological sexes in our dataset,
we investigated the changes in amplitude and width of R-waves between groups (Table 1).

These results suggest that true differences exist between biological sexes regarding the
R-waves morphology on the baseline ECG validating the potential of our proposed method.
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Table 1: Variation in R-wave amplitude and width in the baseline dataset.

R-wave amplitude R-wave width

Female Male Female Male

0.439±0.003 0.464±0.003 4.902±0.123 5.174±0.147

4.3. Generated ECG

Next, we evaluated the quality of the reconstruction to ensure the downstream analysis was
based on quality generated data as well as helping guide the hypothesis on obtained results.

Thus, following training, we contrasted the final models comparing the original ECG
with the generated ECG according to the RMSE, FD and ρ (Table 2).

Table 2: Reconstruction metrics for tested approach with the 95% confidence interval

Model RMSE FD ρ

PrivECG 0.083 ± 0.001 0.444 ± 0.003 0.813 ± 0.001
PrivECG-λ 0.141 ± 0.001 0.494 ± 0.004 0.736 ± 0.002
GenGAN-ECG 0.112 ± 0.002 0.483 ± 0.005 0.767 ± 0.001
controlGAN 0.071 ± 0.001 0.395 ± 0.004 0.854 ± 0.001

From our reconstruction quality results, we validated that the control, controlGAN,
performed as expected with low RMSE and FD values as well as a high ρ when compared to
the entry waveform. Both PrivECG and GenGAN-ECG performed similarly with accurate
regeneration metrics. Notably, PrivECG-λ offered the worse RMSE and FD while providing
the lowest ρ within the compared approaches. However, GenGAN-ECG provided very close
results. Indeed visual analysis of Figure 7 demonstrates that both methods are characterized
by flared T-wave (Figure 1) and wider R-wave potentially explaining those results.

Indeed, all methods generated waveforms qualitatively similar to the original (Green).
Intriguingly, both the PrivECG-λ and GenGAN-ECG have a wide T-wave appearance while
PrivECG and controlGAN produced more similar morphologies to the original data. More-
over, both PrivECG methods seem to generate “wavelets” in the segment joining each
PQRST complex (TP segment). These might be the result of the addition of the random
Gaussian vector at the bottleneck of G, while the smaller amplitude wavelets of GenGAN-
ECG are most likely obtained from the inclusion of the random vector yielding this smaller
effect. Even if there is no clear sex-linked biological correlate, this might be a strategy
employed by G to further trick D. Uniquely, PrivECG-λ appears to generate R-waves with
less defined borders with a fusion with the P-wave. This could be a strategy to further blur
the actual duration of that section of the cardiac cycle, improving sex ambiguity. As de-
scribed by Carbone et al. (2020), not only does the R-wave amplitudes but also their widths
vary, further helping to confuse D. To quantify the changes to the R-wave’s amplitude, we
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Figure 7: Example of lead I waveforms. The green waveform represents the original data
while the orange and red represent PrivECG and PrivECG-λ respectively. The
purple and cyan waveforms represent the GenGAN-ECG and controlGAN results.

investigated the changes to the uniformity of the R-wave’s amplitude σR−wave and also the
difference from the original µ∆R−wave (Table 3).

Table 3: R-wave analysis where σR−wave represents the average intra-ECG standard devi-
ation in amplitude while µ∆R−wave represents the average difference in amplitude
with the original ECG’s

Model σR−wave µ∆R−wave

Original 0.174 ± 0.001 NA
PrivECG 0.137 ± 0.001 0.144 ± 0.001
PrivECG-λ 0.198 ± 0.001 0.160 ± 0.001
GenGAN-ECG 0.162 ± 0.001 0.102 ± 0.001
controlGAN 0.142 ± 0.001 0.112 ± 0.001

Similar to reconstruction metrics, controlGAN produced results approximating the orig-
inal input as expected. However, PrivECG-λ showed to produce the R-waves with the
greatest difference with the original waveform and generating the greatest variation within
the waveform. Similar effects are seen in PrivECG and GenGAN-ECG but to a lesser ex-
tent. This could further demonstrate the strategy that the networks use to confuse the
discriminator by modifying the R-waves amplitude but also increasing its variation across
the generated ECG, thus making the sex prediction more difficult. However, controlGAN
demonstrates to yield ECG waveforms with µ∆R−wave values in between those of PrivECG
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and GenGAN-ECG. This could be explained by the difficulty to recreate tall spindle-like
R-waves thus yielding the short, yet uniform, R-waves as present in Figure 7.

To validate the impact of these reconstructions on the sex-prediction task we have
subsequently tested these waveforms with their original sex labels on our sex-predicting
network.

Table 4: Validation results of the reconstructions

Model Sex prediction accuracy EER F1 score AUPR

Original 0.876±0.004 0.098±0.005 0.931±0.006 0.987±0.002
PrivECG 0.686±0.012 0.177±0.003 0.900±0.009 0.932±0.004
PrivECG-λ 0.529±0.014 0.251±0.008 0.885±0.005 0.877±0.003
GenGAN-ECG 0.563±0.009 0.176±0.006 0.909±0.004 0.945±0.007
controlGAN 0.771±0.007 0.132±0.002 0.921±0.003 0.960±0.006
non-generative 0.512±0.002 0.107±0.005 0.956±0.004 0.872±0.007

These results, presented in Table 4, demonstrate that both PrivECG, GenGAN-ECG
and PrivECG-λ significantly decreased the ability to predict the patient’s sex. However,
only PrivECG-λ made the sex prediction impossible with an accuracy of 0.529. These re-
sults translated to the patient validation task where the EER diminished for GenGAN-ECG
and PrivECG-λ while staying, as expected, only slightly affected by the generative process
as demonstrated by the results for the controlGAN condition. Furthermore, the results ob-
tained with controlGAN demonstrate the importance of noise-sensitive features for accurate
sex-prediction potentially further explaining our lower baseline accuracy compared to Attia
et al. (2019). Additionally, the non-generative control demonstrates that the adjustment
of the R-wave amplitude causes sex-ambiguization however does little effect on the privacy
illustrated by the small change induced on the EER. The significant loss in AUPR could
be both linked with the resulting R-wave deformation causing issues with the detection of
diseases such as infarction.

4.4. Rescuing sex-linked features

To validate that the impact on performance was actually linked to the lack of sex-linked
features, we attempted to “rescue” the network’s accuracy by re-injecting those features
by concatenating them with the convolution features before the dense layers of the CNN.
Our results show that the initial PrivECG-λ with an F1 score of 0.885±0.005 jumped to
0.893±0.004. Although small, this change demonstrates that the sex-linked information
can be rescued as well as telling of the small effect that sex-linked information has on
overall prediction performance. This demonstrates that sex-linked tasks could potentially
be accomplished by also sharing an encrypted sex-linked vector and reinserting downstream
of the network without inducing major performance loss.
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5. Discussion

In this work, we present a methodology to generate ECG-specific privatization methods.
Our approach investigates the generation of privatized ECG waveforms through the pri-
vatization of sex-linked features without severely affecting disease-dependent ones using
generative approaches.

We initially validated that the patient’s sex was accurately detectable using convolution
methods. Moreover, our premise of targeting the R-wave as a potential target for sex
reidentification appeared to be valid in our dataset, with a significant difference in terms
of width and amplitude existing in our dataset (Table 1). Thus, our strategy seemed
appropriate as a potential privatization methods

Indeed, as presented in table 4, most methods attempting to regenerate ECG wave-
forms without sex-identifying information produced similar levels of utility. However, the
biggest difference was in the EER obtained where PrivECG-λ outshined competitive ap-
proaches. This could be explained by the flared T-wave as well as the larger R-wave that
often connects with the neighbouring P-wave (Figure 7) generated through the usage of
our MSEECG loss. Interestingly similar results were obtained by PrivECG and GenGAN-
ECG demonstrating the usefulness of those morphologies to better trick the discriminator.
Furthermore, morphological analysis of the obtained ECGs demonstrates that PrivECG-λ
strives towards a greater difference from the input (Table 2) mainly through a larger vari-
ation in R-wave amplitude within the waveform (σR−wave) and a larger difference between
the input (µ∆R−wave). Indeed, these most likely further confuse the ability of an attacker
to distinguish the biological sex of the patient as R-wave amplitude is linked to the heart’s
ventricle mass that is, in part, related to the biological sex of the patient Carbone et al.
(2020). However, these could worsen predictive performances on diseases that are identified
through R-wave width or the PR segment such as atrial infarction (Zbiciak and Markiewicz,
2023).

We subsequently investigate the ability to reintegrate the sex information later in the
network to validate that indeed the drop in performance was due to the ambiguization or
removal of sex-linked features. To do so, we opted to concatenate a one-hot encoded vector
of the sex of the patient, as presented in Figure 6. We demonstrated that performance
improved by this methodology, indicating that roughly 0.01 points in accuracy were directly
lost due to the lack of clear sex information in the network. Although not significatively
better, this could act as a proxy method to disentangle the impact of sex-relevant features on
potentially more sex-dependant deep learning tasks and could be used to further investigate
the impact of such private attributes in a typical ECG-based prediction algorithm.

Thus, our results suggest that using MSEECG combined with GAN-based approach
could be a promising avenue to generate private ECG waveforms that still permit the
training of accurate deep learning models.

Limitations Although we deem our approach interesting, we recognize various limita-
tions. First, our utility has been validated on a handful of ECG-bound conditions and thus
would need to validate the true utility on a much wider array of cardiac illnesses where
the artifact introduced could have a more major impact on the prediction quality. Also,
although we demonstrated that the loss of utility was minimal, it is likely that sex × disease
interactions exist, and it is unclear how these would impact the generalization capacity on
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external datasets. Thus, potentially privatizing another attribute, such as age or ethnicity,
might be a safer objective to guarantee a better privacy-utility trade-off. However, it must
be stated that age affects, the ECG by a slowdown in heart rate but also by the accumu-
lation of heart abnormalities. Therefore, introducing age ambiguity would necessitate the
generator to incorporate disease-related features into younger patients’ ECGs, resulting in
a less desirable privacy-utility tradeoff.

Future work As we believe that improving privacy in healthcare is a key issue, we have
the intention to further update these approaches to test the prioritization of a combination
of various attributes including sex, age and ethnicity in a 12-lead format to improve the
safety of ECG data-sharing and further prevent re-identification risks beyond the current
paradigms. Moreover, we aim to include a re-identification network within the adversarial
framework to further increase the resulting EER and thus further improve the privacy of
the algorithmic solution.
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Appendix A.

Table A.1: Top 15 diagnosis on dataset 1 ECGs. (Multiple labels can be associated with
the same waveform).

Label Occurrences

Normal sinusal rhythm 18 015
Sinusal bradycardia 6 241
Inferior wall infarction 6 123
Left axial deviation 5 258
Complete right bundle branch block 3 574
Atrial fibrillation 2 595
Non-specific T wave abnormality 2 426
Complete left bundle branch block 2 294
First degree A-V block 2 238
Prolonged QT 1 680
Left atrial dilatation 1 584
Anterior wall infarction 1 500
Left anterior hemiblock 1 402
Non-specific intraventricular conduction disorder 1 377
Septal infarction 1 351
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Table A.2: Distribution of labels in dataset 3 for multilabel classification.

Label Occurrences

Atrial fibrillation 68 303
First-degree atrioventricular block 64 508
Right bundle branch block 63 999
Left bundle branch block 39 050
Infarction 161 603
Sinus rhythm 482 240
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