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Abstract

We introduce the Explainable Analytical Systems Lab (EASL) framework, an end-to-end
solution designed to facilitate the development, implementation, and evaluation of clinical
machine learning (ML) tools. EASL is highly versatile and applicable to a variety of con-
texts and includes resources for data management, ML model development, visualization
and user interface development, service hosting, and usage analytics. To demonstrate its
practical applications, we present the EASL framework in the context of a case study: de-
signing and evaluating a deep learning classifier to predict diagnoses from medical imaging.
The framework is composed of three modules, each with their own set of resources. The
Workbench module stores data and develops initial ML models, the Canvas module con-
tains a medical imaging viewer and web development framework, and the Studio module
hosts the ML model and provides web analytics and support for conducting user stud-
ies. EASL encourages model developers to take a holistic view by integrating the model
development, implementation, and evaluation into one framework, and thus ensures that
models are both effective and reliable when used in a clinical setting. EASL contributes to
our understanding of machine learning applied to healthcare by providing a comprehensive
framework that makes it easier to develop and evaluate ML tools within a clinical setting.

1. Introduction

While progress has been made in the development of explainable artificial intelligence (XAI)
methods for decision-support, their evaluation in a healthcare setting remains an open prob-
lem. AI is a general term for any computer system that can perform tasks that emulate
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human intelligence (Moor, 2006). Machine learning (ML), which uses algorithms to learn
from data and make predictions, decisions, and recommendations, is a key technology pow-
ering AI system (Tjoa and Guan, 2020). The field of XAI focuses on making AI systems
more transparent and understandable (Markus et al., 2021). It utilizes techniques such
as feature engineering, variable importance, and visualization to explain how an AI sys-
tem is making decisions and predictions, thus making the system more interpretable for
humans (Adadi and Berrada, 2018; Dwivedi et al., 2023).

It can be challenging to determine a clear definition for an explanation of an AI sys-
tem (Verma et al., 2020). Different stakeholders may have divergent expectations of what
constitutes a satisfactory explanation (Cai et al., 2019; Langer et al., 2021). Furthermore,
the complexity of AI systems and the real-world contexts they are employed in can make it
hard to convey their behavior in an efficient and comprehensive fashion. Explanations are
often subjective and context dependent, making it challenging to generate a universal defi-
nition of what constitutes an explanation for an AI system. In general, there is a trade-off
between the performance of AI models and their interpretability: the better they preform
the less interpretable they are. When applied to high-risk settings, such as clinical health-
care, this trade-off can prevent theoretically powerful AI systems from being translated into
real-world practice due to their lack of interpretability (Hatherley et al., 2022).

Explanations for AI systems often involve visualizations, metrics, and narrative descrip-
tions (Tjoa and Guan, 2020). Visualizations such as bar graphs, heat maps, and decision
trees can be used to illustrate the system’s internal workings, while metrics like precision,
recall, and accuracy can provide insight into its performance. Narrative descriptions can be
used to explain the AI system’s features, limitations, and potential applications (Gunning
and Aha, 2019). Visual analytics (VA) methods, which combine computational approaches
with interactive data visualization, offer an effective way to explore model outputs and com-
municate between an XAI system and the end-user. VA tools can integrate human judgment
into algorithmic data-analysis by utilizing interactive visualizations (Cui, 2019). Recent ad-
vancements in VA methods tailored for the clinical setting are just beginning to emerge. A
review of 71 VA platforms specifically developed for healthcare revealed that most platforms
were created for classical and mainstream statistical methods (e.g., clustering and regression
analysis), while few platforms were designed for predictive modeling (Ooge et al., 2022).
Predictive modeling is a type of data analysis that applies data mining, machine learning,
and statistical techniques to identify patterns and relationships in data, which can then be
used to forecast or predict future outcomes or events. Such methods within an XAI system
can be applied in healthcare contexts to gain better understanding of complex data and
make informed decisions. However, a survey of 55 VA methods for clinical XAI highlighted
the lack of examples of VA tools built for predictive modeling (Alicioglu and Sun, 2022).
These works demonstrate that there is a need to develop methods for non-expert users to
understand complex AI models.

Designing a clinical AI system requires a skilled multi-disciplinary team with expertise
in various fields, such as clinical medicine, computer science, software engineering, artificial
intelligence, design, observational studies, and other mixed methods, to overcome technical
and humanistic challenges, such as tailoring a solution for the target audience and setting
expectations for its function and benefits (Stephanidis et al., 2019; Quinn et al., 2021).
Understanding the target audience, their goals, and the context of the decision-making
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environment are all important considerations when determining if an explanation is under-
standable to a given person (Kann et al., 2021). Human-centered design (HCD) principles
emphasize the importance of user involvement in the design process as well as iterative
design and user testing to ensure that XAI solutions are tailored to the needs of users.
However, there are several obstacles that prevent user involvement in healthcare (Chen
et al., 2022a), such as (1) the knowledge gap between ML developers and the stakehold-
ers in medicine, such as providers, administrators, or patients; (2) restrictions and ethical
concerns limiting access to potential target users for iterative empirical tests in simulated
setups for formative research or validation; (3) the complex nature of medical data (e.g.,
unstructured or high dimensional) and decision-making tasks from multiple data sources;
and (4) the lack of ML developers’ training in design thinking and human factors engineer-
ing. As a result, AI solutions are often incomprehensible to target users, which diminishes
their relevance.

In this paper, we present the EASL (pronounced ‘easel’) framework to organize and
execute the design, implementation, and evaluation steps necessary to translate AI to the
clinical setting. EASL begins to address the four obstacles outlined above. We implemented
EASL as a full-stack web-based multi-container Docker application and provide an example
use case—a pilot study on the effects of XAI-assisted diagnoses on clinician decision-making.
Through EASL, our goal is to support the ongoing efforts regarding XAI model development,
and ML more broadly, by simplifying the clinical translation pipeline.

Generalizable Insights about Machine Learning in the Context of Healthcare

Our contribution is not focused on the development or deployment of a specific machine
learning model. Instead, the EASL framework tackles the overall process of designing, im-
plementing, and evaluating machine learning models in clinical healthcare settings. As such,
both the EASL framework itself and the lessons learned from applying EASL in the domain
of image classification are generalizable to other models and applications in healthcare. By
providing a unified environment for the design, implementation, and evaluation of XAI sys-
tems, our goal is to improve patient care by increasing physician access to information that
can aid in their clinical decision-making.

2. Related Work

2.1. Human-Centered Design for Clinical XAI Development

Human-Centered Design (HCD) is becoming a topical solution for the development of clin-
ical XAI tools. HCD for creating clinical solutions is a specific approach that puts patients
and healthcare professionals at the center of the development and implementation process.
It involves understanding users’ needs and designing systems that are tailored to those
needs, while also considering ethical, legal, and social implications. By using a human-
centered design approach, clinical AI solutions can be designed to be more effective and to
have a positive impact on patient care.

Schoonderwoerd et al. (2021) presented the DoReMi approach, a human-centered design
workflow for AI-generated explanations in a clinical decision support system (CDSS) for
diagnosing ADHD in children. DoReMi consists of domain analysis, requirements elicitation
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and assessment, and multi-modal interaction design and evaluation. After analyzing the
literature on the clinical diagnosis of ADHD, the group defined 20 information elements for
XAI. Importantly, they considered the social contexts of the environment in which the CDSS
would be used. These contexts include explaining the decision of the CDSS to a colleague
that agrees or disagrees with the decision, explaining the decision to a parent that agrees or
disagrees with the decision, and explaining whether the decision aligns with the user’s own
assessment or not. Using these elements and social contexts, they created explanation design
templates and generated prototypes for user studies. Inspired by DoReMi, we designed
EASL to be flexible and incorporate the approach into one centralized software system.

One of the most directly applicable resources for our example application of image clas-
sification is the INTRPRT framework, a set of HCD guidelines specific to medical imaging
AI (Chen et al., 2022a). Like DoReMi, INTRPRT highlights the importance of formative
user research, empirical user testing, general assessment of model transparency, and XAI
systems for diverse stakeholders. The authors emphasize that these guidelines are a starting
point and must be adapted and refined to the individual context of the AI application to
ensure it is tailored to the end user’s needs. The required refinement and adaption also
assert that the successful implementation of XAI in the clinic merits customized HCD. By
utilizing a centralized resource like EASL, AI developers, VA designers, and clinical end-
users can all interact in one software environment, which simplifies our ability to co-create
and adhere to HCD guidelines like DoReMi and INTRPRT.

2.2. Evaluating Clinical XAI

The evaluation of XAI is difficult in the clinical setting because of the complexities of clin-
ical decision-making and the ambiguity of what constitutes a sufficient explanation to a
given person. Doshi-Velez and Kim (2017) proposed a taxonomy for evaluating the inter-
pretability of AI model explanations, which is especially applicable in the healthcare sector.
The taxonomy includes application-grounded evaluation, human-grounded evaluation, and
functionally-grounded evaluation (ordered by decreasing cost and complexity).

Application-grounded evaluation is the most rigorous framework as it evaluates a tool in
the context of real users performing real tasks (Chen et al., 2022b); however, its implemen-
tation requires time, effort, and high standards of experimental design. Human-grounded
evaluation is an attractive alternative for healthcare application, as it does not require ac-
cess to the target community and can be conducted with lay people, providing a larger
subject pool while also reducing cost. This type of evaluation is most useful for assessing
more general aspects of explanation quality in healthcare settings. Functionally-grounded
evaluations are another appealing option, as they do not require human experiments and
instead use a formal definition of interpretability. These evaluations are especially beneficial
when the class of models has already been validated via human-grounded experiments, or
when human subject experiments are not possible or unethical. Additionally, this type of
evaluation requires less time and financial resources than general human-subject experi-
ments, and does not necessitate approval from an Institutional Review Board, making it a
viable option for healthcare practitioners. Chen et al. (2022a) note that out of 68 clinical
XAI manuscripts that they reviewed, only three performed an evaluation with end-users.
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EASL is designed to handle the evaluation of all three levels of the Doshi-Velez and Kim
(2017) taxonomy.

Chen et al. (2022c) proposed a use-case-grounded algorithmic evaluation called SimEvals
to efficiently screen choices of information content and identify good candidates for a user
study. Each SimEval involves training an agent to predict the use case label given the infor-
mation content that would be presented to a user. The proposed method demonstrated that
the agent’s test set accuracy can be used as a measure of the predictiveness of information
content (more specifically, of an explanation method) for each use case. The authors found
that humans perform significantly better on explanations that SimEvals selects as promising
compared to other explanations. We expect that this proposed work can be incorporated
into future explanation evaluation workflows to enhance the efficiency and effectiveness of
user study design.

In addition to academic research, there are many commercial examples of software for
facilitating design and testing of visual analytics interfaces. These tools integrate with
industry standard software like GitHub, Slack, and Google Analytics to facilitate version
control, team communication, and real-time analytics of user studies. In addition, these
tools provide functionality like email-based user surveys, in-app annotation, and tools for
recruiting study subjects. However, these solutions are cost prohibitive for small scientific
research groups and are not designed for handling medical data. EASL integrates web
analytics functionality to provide an open-source platform to conduct comprehensive user
studies without this additional cost.

3. Methods

In this section, we introduce the EASL framework, an end-to-end solution that facilitates
the design, implementation, and evaluation of clinical AI tools. With its modular design,
EASL is highly versatile and generalizable. It is applicable to a variety of clinical and
biomedical contexts, from custom dashboards for independent scientists to complex AI
systems deployed across multiple clinical sites. To illustrate how this framework can be
applied in practice, we present EASL in the context of an example application: designing
and evaluating a deep learning classifier to predict diagnoses from medical imaging.

3.1. Explainable Analytical Systems Lab (EASL)

As a conceptual framework, we modeled EASL after a potential artists’ workflow by coining
the design, implementation, and evaluation steps as the Workbench, Canvas, and Studio

modules (Figure 1). The purpose of using the artist analogy is to emphasize the humanistic
aspects and design focus when developing AI for healthcare. Each module contains design,
implementation, and evaluation resources specific to a given project. A complete EASL
project includes resources for data management, AI model development, VA development,
service hosting, and usage analytics. Below we detail the purpose of each EASL module and
provide specific examples regarding the functionality for each in the context of our example
application.
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Figure 1: Graphical Overview of the EASL Framework. EASL projects are comprised of
three modules (Workbench, Canvas, Studio). As an example, developing a deep
learning classifier in TensorFlow for medical imaging requires a PACS (detailed
below) and Jupyter (Python) environment in the Workbench module, medical
imaging viewer and web development resources in the Canvas module, and web
analytics (Matomo) and deep learning model hosting in the Studio module.

Workbench

The workbench is an important tool for artists as it allows them to prototype by explor-
ing ideas, experiment with techniques, and bring their creative visions to life. Through
the use of the workbench, artists can test out designs, colors, and forms to refine their
projects. Similarly, prototyping for clinical AI tools involves creating a working model and
experimenting with different features and functions to ensure the tool functions properly
and accurately when used in a clinical setting. This process also helps identify potential
problems, refine the user interface, and evaluate the performance and accuracy of the tool.
In practical terms, developers typically manage data and develop initial AI models in order
to identify and address any issues with the AI algorithm prior to its release. In the context
of our example application, this module includes resources for handling medical imaging
data and initial data evaluation and model development.

Medical imaging has a specialized form of data management due to the standardization
of its data format, Digital Imaging and Communications in Medicine (DICOM). DICOM
files are characterized by a distinct file format and a set of rules for exchanging information
between medical imaging devices. These datasets are typically stored on a server, either
in the cloud or on-premise, and accessed via a secure connection by authorized personnel.
A Picture Archival and Communication System (PACS) is used to manage these large
image datasets. PACS are medical imaging technologies that replace physical storage, such
as film and x-rays, with digital images that can be viewed and shared over a network.
PACS can be integrated with hospital information systems to give clinicians an overview
of a patient’s medical history. EASL provides a PACS for handling DICOM data and
its associated software programs for accessing and managing the stored data within the
database, powered by an Orthanc backend service (Jodogne, 2018).

After importing the medical images into a database, the next step of the process is to
preprocess the data and begin developing AI models. This step is commonly performed by
developers using an Integrated Development Environment (IDE). For our IDE, we utilize
JupyterLab - an open-source web-based user interface for interactive computing. It pro-
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vides a platform for data scientists, analysts, and developers to create and share documents
containing live code, equations, visualizations, and narrative text. JupyterLab supports
the use of multiple programming languages such as Python, R, Julia, and Scala. It also
includes features such as a flexible file browser, an image viewer, and a multi-user server.
Our implementation natively supports TensorFlow with NVIDIA GPU compute as well as
standard Python packages like scikit-learn, pandas, matplotlib, and numpy. Developers
can also install their preferred Python software packages such as PyTorch or plotly. Addi-
tionally, EASL provides a built-in API for easy accession of DICOM data from within the
Python environments. Using this API, developers can import DICOM data into a format
appropriate for AI development which greatly simplifies the logistics of this step.

Canvas

The canvas is the foundation for an artist’s artwork. It provides a surface to work on and
allows for a variety of textures, colors, and effects to be applied to create a unique piece
of art. The canvas also serves as a physical representation of the artist’s vision and can
be used to express their individual style and creative vision. Prototyping for designing
clinical AI tools is the process of creating a simplified version of the AI tool to test its
functions and usability. This process allows developers to explore the design, refine the
interface, and experiment with different features and functions prior to launching the full
version. Through the iterative process for developing a prototype, developers can identify
any issues that may arise before they become major problems, saving time and resources on
development. In our example application, the canvas resources comprise a medical imaging
viewer and a web development framework (e.g., HTML/JavaScript).

DICOM images can be viewed using specialized medical imaging software which allow
users to view, manipulate, and analyze the images in order to make medical diagnoses or
evaluations. The Open Health Imaging Foundation (OHIF) Viewer (Urban et al., 2017) sup-
ports viewing of standard medical image and enables developers to explore their databases
with functionality like an integrated multi-view layout, contrast adjustment, measurements,
and annotations. In addition, the OHIF Viewer component library (React Viewerbase) is
available under an MIT copyright license. The MIT license is permissive and allows for
modification, which enables the use of OHIF components in the visual analytics design pro-
cess. The OHIF Viewer also has a rich library of extensions, which can readily be used to
extend EASL to visualize whole slide microscopy data.

Web-based frameworks like PHP, HTML, and JavaScript are all highly flexible for de-
signing visual analytics interfaces. PHP can create dynamic webpages and integrates with
databases, HTML provides the visual layout and structure of the interface, and JavaScript
supports coding interactive elements and creating custom data visualizations. Additionally,
frameworks such as React, Vue, and Angular can be integrated to speed up the process of
creating custom visual analytics interfaces. Libraries such as D3.js provide powerful data
visualizations with minimal coding (Bostock, 2012). From a clinical implementation stand-
point, a web-based framework for developing clinical AI has several advantages. First, it
allows clinicians and researchers to collaborate more easily, since they can access and share
data and results in real-time. Second, a web-based framework can provide a more secure
environment for AI development, since the data and results are stored in a centralized lo-
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cation and can be monitored for security breaches. Finally, a web-based framework can
enable faster development and deployment of AI-based clinical solutions, since the data and
results can be accessed from any device with an internet connection.

Studio

The purpose of a studio for an artist is to provide a space for them to create and showcase
their artwork. A studio can be used to display finished pieces and facilitate interactions
between the artist and their audience. It can also serve as a hub for networking and
collaboration with other artists and art professionals. In the context of clinical XAI, the
studio represents the functionality for hosting finished tools and evaluating their reception
and use with the target audience. To implement this functionality we utilize web analytics
which is the process of analyzing data related to a website or web-based application.

Hosting production AI models can be challenging due to their need for substantial com-
puting resources, large datasets, and complex algorithms that can be difficult to manage.
To address these challenges, hosting a binarized version of an AI model can be beneficial as
it can improve inference speed and reduce latency, as well as reduce memory and storage
requirements. Binarized models can be more energy efficient, as they require fewer com-
putations than non-binarized versions, and can also improve model accuracy by pruning
parameters and reducing overfitting. Furthermore, binarizing a model can increase secu-
rity and reduce the risk of malicious actors exploiting vulnerabilities. To ensure accuracy,
scalability, and reliability, AI models must also be constantly monitored and updated. Ad-
ditionally, there are potential security risks associated with hosting production AI models,
such as data breach and malicious actors, and AI models can often be expensive to develop
and deploy, requiring substantial investments in hardware and software. In our example
application we utilize TensorFlow Serve to host the AI model backend. TensorFlow Serve
is a flexible, high-performance serving system for machine learning models, designed for
production environments. It enables data scientists, developers, and production engineers
to deploy new algorithms and experiments, while keeping the same server architecture and
APIs.

Of the few examples of clinical AI tools that have been evaluated with clinical end users,
they are predominately evaluated using survey-based methods. These methods have utility,
but it is important to consider how the presentation of a survey could impact the study.
For example, the use of a separate and often simplified software can lead to a scenario
where the clinical user is not performing the task in a realistic environment. Therefore,
we designed EASL to include Matomo (matomo.org, 2023), an open-source web analytics
platform used to track and analyze visitor activity on websites. It offers features such as
user segmentation and A/B testing. By integrating a small amount of code, developers of
ML models can inject this web analytics functionality into any project and - importantly -
can record user interaction directly within the user study session without needing additional
software. In our example application, this resource enables direct time-stamped recordings
of diagnostic predictions and time-stamped recordings of which DICOM slices were viewed
for each prediction.
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3.2. Implementation

EASL is a web-based application built using the Laravel PHP framework (Otwell, 2023),
and deployed through a comprehensive Docker environment with middleware security. The
EASL Base Image comprises a Linux operating system, MySQL backend, PHP support,
and Matomo analytics integration. All the details pertaining to these modules and their
implementation are outlined in the documentation. Laravel’s Sail is used for managing
services within the Docker development environment. With Docker, developers can package
an application with all of its dependencies into a standardized unit, called a container.
This allows applications to be quickly and reliably moved between development, test, and
production environments, regardless of the underlying operating system or infrastructure.
Additionally, Docker containers provide an isolated and secure environment for applications
to run in, helping to reduce conflicts between applications running on the same system. Our
implementation is publicly available on GitHub (https://github.com/lericnet/easl)
under the GNU General Public License v3.0, providing developers with the flexibility to
customize the framework and adding or removing Docker Images with minimal overhead.

4. Results

We applied EASL to replicate a clinical AI user study that we previously conducted with-
out EASL. In this study, we designed and developed a deep learning classifier to predict
diagnoses from medical imaging, and then evaluated the model in a healthcare setting with
clinical experts. The replication of a previous study allows us to identify and discuss the
effect that EASL had on the overall process of designing, implementing, and evaluating a
ML solution in a healthcare setting.

Case Study: Impacts on Decision-Making Using Counterfactual Explanations
of AI Diagnosis of Pediatric Brain Tumors from Neuroimaging

In this case study, we utilize EASL to test a hypothesis regarding how counterfactual AI
visualizations can improve decision-making confidence while decreasing difficulty. We com-
pare it to a previous iteration of the experiment in which we did not use EASL.

Clinical Background

Explaining AI-based predictions is fundamental for the development of clinical decision
support systems. A common visual approach for explaining imaging data predictions is to
overlay saliency maps onto images to allow users to interpret what visual features are asso-
ciated with a given prediction. This approach can be difficult to utilize when differentiating
nuanced concepts. For example, clinicians in neuro-oncology commonly must differentiate
between a group of similar brain tumors (i.e., a radiographic differential diagnosis). We
hypothesized that clinicians will be able to make diagnostic predictions more confidently,
with less difficulty, and with greater accuracy if they are able to query “What are the most
similar and dissimilar previously seen patients?” when given a novel case to diagnose. This
concept is known as representativeness; a heuristic that clinicians use to interpret diagnostic
data by considering similarity of a single case to a group of previously seen cases (Richie
and Josephson, 2018).
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Data and Tasks

We utilized a dataset of preoperative Magnetic Resonance (MR; n=52) and Computed To-
mography (CT; n=61) image volumes and followed a human-centered design approach. We
met with a board-certified neurosurgeon and neuroradiologist to conduct interviews regard-
ing their workflow for diagnosing suprasellar tumors (Prince et al., 2020). We surveyed the
literature to derive a library of visualization methods and discussed which techniques would
be most relevant. Working with our collaborators, we defined three specific tasks for this
interactive dashboard to perform:

1. Standard neuroimaging interaction and interpretation. Neuroradiologists utilize tech-
nology in many ways to acquire and interpret neuroimaging data. The goal of our
design is to improve their existing workflow in a non-disruptive manner. Therefore, we
must include standard functionality expected by practitioners like contrast/brightness
adjustment, scroll-based z-axis navigation, multi-view synchronized views. The OHIF
viewer provides a standard radiographic interpretation framework (Urban et al., 2017)
that fulfills these requirements, see Figure 2.

Figure 2: Example of standard neuroimaging interaction interface (OHIF Viewer) shown
with sagittal MRI test case and reference symbol at top right corner.

2. Counterfactual representation of predictions. We repurposed Google’s What-If Tool
(WIT; Figure 3) for counterfactual explanations (Wexler et al., 2019). Briefly, the
WIT identifies counterfactuals using L1 or L2 norms in the output layer of a Ten-
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sorFlow model. Typically, the WIT provides the functionality of modifying inputs;
enabling the user to query “What if I change this feature value?” We disabled this
functionality for our purposes to simplify the interface. Instead, users were only able
to observe what similar and dissimilar previously seen patients were present in the
dataset, thus providing the functionality of counterfactual matching. Additionally,
there were a variety of other features present, which may have been overwhelming
and confusing for unfamiliar users, as some of the terminology used was machine
learning-based instead of healthcare-specific.

3. Measurement of decision-making confidence, difficulty, and performance. We adapted
the ICE-T evaluation framework for our study to assess the visualization’s value for
our specific domain (Wall et al., 2018). Specifically, subjects would respond to “How
confident are you in your prediction?” and “How difficult was your decision?” using
a 5-point Likert scale for the prediction for each patient.

Figure 3: Example of WIT Interface that the participants utilized during the third phase
of the study. The patient to diagnose is marked by yellow brackets, with the
counterfactual match indicated by the green brackets. The points on the scatter-
plot are color-coded to show the predicted diagnosis group (ACP was blue and
NOTACP was red). Metadata is located on the left side of the screen, with the
predicted diagnosis scores listed in the bottom left table.
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Technical Background

XAI methods are designed to explain an AI model’s decision-making process. These expla-
nations are often derived by perturbing features one at a time and monitoring change in
some model performance metric, which then can translate to relative importance of that
feature (Hailemariam et al., 2020). In the case of an image, each individual pixel (i.e., fea-
ture) is censored, classification is performed, and accuracy is reported. By comparing the
change in accuracy for each pixel, we can determine a relative importance of that feature.
Relative importance can then be overlayed as a heatmap on the original image, which allows
the user to visually interpret what parts of the image contribute to the overall classification
decision.

Different XAI methods accomplish this process using different mathematical approaches
(Stepin et al., 2021). The most implemented XAI methods in biomedical research are LIME
and SHAP (Hailemariam et al., 2020; Ribeiro et al., 2016; Štrumbelj and Kononenko, 2014).
Continuing with the image example, LIME creates a surrogate model for a subset of images
that an AI model considers to be similar and observes how changing features impacts the
surrogate model. In simple terms, SHAP advances beyond that concept by using cooperative
game theory to fairly allocate prediction importance across all input values. Importantly,
these methods have been designed to explain these concepts to AI engineers and researchers,
not to clinicians.

Study Design

Figure 4: Schematic depicting each experimental condition and the variables measured.
Symbols indicating which software components are included in each condition
are depicted at the bottom.

We conducted a three-condition study with our two expert subjects, each subject per-
formed all three conditions (Figure 4). For all study conditions, subjects were given a set
(n = 28) of interactive PDF documents (Figure 5) that linked to the OHIF Viewer (Urban
et al., 2017). Subjects were tasked with binary diagnostic prediction of adamantinoma-
tous craniopharyngioma (ACP) versus other suprasellar tumors (NOTACP). In addition,
subjects would respond to “How confident are you in your prediction?” and “How difficult
was your decision?” using a 5-point Likert scale. For each patient, there was also a free
response field for subjects to provide any additional feedback. The first condition provided
only the OHIF Viewer. The second condition extends the first condition with a predicted
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value. Predictions were generated using a deep learning model previously published (Prince
et al., 2020). The third condition extends the second condition with the WIT. Subjects
were prompted to think aloud during each condition and audio and screen recordings were
captured for each session.

Figure 5: Example of interactive PDF with model prediction [document top center] clickable
links to OHIF Viewer, radio buttons for reported prediction, survey questions,
and free response text area.

Study Results

There was no effect on the diagnostic performance of clinical users (data not shown). There
was no significant change in decision-making confidence and difficulty for each subject across
the three study conditions for the NOTACP class of data (data not shown). However, there
was a trend for increased diagnostic confidence and decreased diagnostic difficulty for both
subjects with predictions for the ACP class of data (Figure 6). This trend was strongest
for the third condition of the study.

Utility of using the EASL framework for conducting the study

We replicated our original experimental workflow using EASL. Data curation was stream-
lined to one access point using a standard File Browser interface, eliminating the need for
unique data input requirements for the OHIF Viewer, model training, and WIT, which pre-
viously necessitated command-line interactions. In addition, the interaction between the
DICOM server (which stores the images), the OHIF Viewer (which shows the images), and
the WIT requires knowledge of network server protocols and relational databases. EASL
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Figure 6: Study results: counterfactual XAI visualizations (condition 3) were associated
with increased confidence and decreased perceived difficulty for diagnostic tasks.
Each condition is shown on the x-axis with symbols indicating the respective
components presents (standard interface, static model prediction, or WIT). The
y-axis displays the 5-point Likert scale scores for the survey questions asked re-
garding decision-making confidence and perceived difficulty.

greatly simplified this interaction, allowing the researcher to focus on AI model and visual-
ization development.

Utilizing our existing preferred workflows, there was no change in experience with respect
to model development and testing within EASL, as this step was performed using the
standard JupyterLab interface with TensorFlow software. The built-in API streamlined
direct access to the DICOM data into a ready-to-use format. This process previously
required many intermediary steps, and there was potential for human error. Similarly, there
was no change in experience regarding the development of the visual analytics interface due
to the use of the JupyterLab interface. Testing was greatly improved and simplified; previous
iterations that required the use of a separate PDF building software and management of
links on each document, were surpassed using simple HTML survey instruments that can
be sent to and received from study participants via email.

5. Discussion

XAI has the potential to improve patient care by providing physicians with access to more
comprehensive information to facilitate clinical decision-making. To ensure XAI solutions
are tailored to user needs, the EASL framework makes it easier to implement HCD prin-
ciples. User involvement and iterative testing throughout the development process are
fundamental to HCD; however, user involvement and testing are also technically challeng-
ing and therefore often omitted, which leads to inadequate testing of proposed clinical XAI
tools. EASL addresses this gap and encourages the development of XAI tools that meet
the needs of clinicians, enhancing patient care through improved decision-making.

EASL streamlines the process of combining resources necessary for design, im-
plementation, and evaluation of clinical XAI systems. Efforts related to the de-
sign, implementation, and evaluation of clinical XAI systems are often conducted separately,
leading to siloed development. Additionally, there is an imbalance in the focus given to the
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design and implementation stages compared to evaluation. To address these issues, we aim
to formalize a comprehensive web development environment within the EASL framework
that encompasses all three steps and places emphasis on evaluation.

The purpose of EASL as a framework is to establish a centralized space for the develop-
ment of clinical ML solutions. Drawing inspiration from the commercial user experience de-
sign space, where software solutions facilitate real-time integration of design, development,
and testing for web-based applications, we propose a similar approach for ML solutions in
the clinical domain. EASL serves as a bridge to close the knowledge gaps between ML de-
velopers and healthcare stakeholders by providing a shared environment to store and utilize
their knowledge. Furthermore, powered by web analytics, EASL facilitates iterative empir-
ical testing and addresses restrictions and ethical concerns. It offers modular open-source
solutions for medical data handling, implemented through Docker containers, and grants
easy access to multiple data sources and deep learning functionality in Python.

In our example application, we conducted a pilot user study to examine how an inter-
active XAI tool can enhance a clinician’s diagnostic performance. However, orchestrating
this study proved complex due to the need to deploy separate local server instances for a
PACS, a medical imaging viewer, and the What-If Tool with TensorFlow Serve instances of
a deep learning model. The resources were coordinated through an interactive PDF created
in Adobe InDesign. Clinicians commented that this testing environment was unrealistic
and constrained their typical workflow. By consolidating these resources into a single com-
putational environment, EASL simplifies the logistics of integrating the diverse resources
required for designing, implementing, and evaluating clinical XAI systems.

The Dolshi-Velez and Kim taxonomy encompasses application-grounded evaluation,
human-grounded evaluation, and functionally grounded evaluation. Both application-ground-
ed evaluation and human-grounded evaluation involve human users and are supported by
the complementary components of the complete EASL framework: the Workbench, the
Canvas, and the Studio. These evaluations are typically conducted for relatively mature
research prototypes. In contrast, functionally grounded evaluations focus on computational
and/or algorithmic performance and do not involve human users. These types of evalua-
tions are suitable for early-phase prototypes and can be facilitated by the EASL workbench
and/or canvas.

The EASL web analytics resource provides a powerful tool for creating more
realistic testing environments. By collecting comprehensive time-stamped results of
how users interact with the system, we can create an accurate picture of the user experi-
ence. This type of data can support user studies on clinical XAI systems on a variety of
endpoints, such as a laptop, desktop, tablet, or mobile phone. We can also measure whether
the endpoint has an impact on the study results. Additionally, EASL collects specific infor-
mation regarding the operating system, web browser, and screen size and resolution of each
user’s device. This information creates a more comprehensive picture of the user experience
and ensures that the results of our studies are not skewed by the used endpoint. Taken
together, this data allows us to create a realistic testing environment and to confidently
draw conclusions about the effectiveness of our XAI systems.

EASL is well-suited for future clinical trials regarding XAI. Another future di-
rection for EASL is to conduct a fixed endpoint study. For example, radiologists typically
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interpret medical images on specialized DICOM-calibrated computer monitors which are
optimized to communicate radiographic data through contrast and brightness channels. To
ensure that potential decision-making improvement can be measured without constraining
the environment, the endpoint for such a study should be the specialized equipment. Addi-
tionally, it is important to understand how different user endpoints impact decision-making
when developing clinical XAI. As EASL is a web-based framework, it is flexible in terms of
deployment and is thus suitable for future clinical trials regarding XAI.

Limitations The implementation of EASL presents various challenges that require exper-
tise in full stack web development, artificial intelligence development, statistical program-
ming, and hosting multi-container Docker applications. To address this and make EASL
more accessible to non-expert programmers, we are developing project templates that in-
clude the necessary resources to quickly produce specific use cases. Additionally, we are
working on simplifying the integration of computational resources needed for building clin-
ical XAI tools and enhancing real-world translation. This involves focusing on the design,
implementation, and evaluation aspects.

It is important to note that the current implementation of EASL is a web-hosting
framework and not a publicly accessible resource. As a result, individual EASL instances
do not communicate and can become highly customized, leading to interoperability issues.
To overcome this limitation, hosting a persistent instance over a scalable cloud compute
solution, such as Amazon Web Service, is a potential solution. However, this approach
may lead to larger databases for XAI model development and could slow down small design
studies with regulatory requirements.

In our Case Study, only two clinicians assessed the interface, which limits our ability
to draw definitive conclusions from this application. However, we have ongoing work to
expand the use case discussed in this manuscript to include a larger number of clinicians.
EASL provides a framework that enables us to conduct these larger case studies effectively.

In terms of the generalizability of the EASL framework, the weakness lies in the fact
that only one machine learning use case is tested, which is not sufficient to prove its general-
izability. Therefore, we are currently undertaking additional studies to further demonstrate
the framework’s generalizability. In one such study, we leverage EASL for the development
of custom single-cell RNA-sequencing analytics dashboards with built-in machine learning
functionality. The intention is to follow this manuscript, which presents the EASL frame-
work, with additional application papers across various biomedical domains.

6. Conclusion

We presented EASL, a powerful and versatile platform that can be used to design, imple-
ment, and evaluate XAI-based decision-support systems in healthcare. It can be utilized
to create realistic testing environments, deploy resources, and collect comprehensive user
analytics. EASL also allows for the scalability of the platform through the use of cloud com-
puting solutions, facilitating further development in the field of XAI-based decision-support
in healthcare.
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