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Abstract

In healthcare and biomedical applications, extreme computational requirements pose a
significant barrier to adopting representation learning. Representation learning can en-
hance the performance of deep learning architectures by learning useful priors from limited
medical data. However, state-of-the-art self-supervised techniques suffer from reduced per-
formance when using smaller batch sizes or shorter pretraining epochs, which are more
practical in clinical settings. We present Cross Architectural - Self Supervision (CASS)
in response to this challenge. This novel siamese self-supervised learning approach syn-
ergistically leverages Transformer and Convolutional Neural Networks (CNN) for efficient
learning. Our empirical evaluation demonstrates that CASS-trained CNNs and Transform-
ers outperform existing self-supervised learning methods across four diverse healthcare
datasets. With only 1% labeled data for finetuning, CASS achieves a 3.8% average im-
provement; with 10% labeled data, it gains 5.9%; and with 100% labeled data, it reaches
a remarkable 10.13% enhancement. Notably, CASS reduces pretraining time by 69% com-
pared to state-of-the-art methods, making it more amenable to clinical implementation.
We also demonstrate that CASS is considerably more robust to variations in batch size
and pretraining epochs, making it a suitable candidate for machine learning in healthcare
applications.

1. Introduction

The application of artificial intelligence in medical imaging has been restricted by minimal
data availability. First, data labeling typically requires domain-specific knowledge. There-
fore, the requirement of large-scale clinical supervision may be cost and time prohibitive.
Second, due to patient privacy, disease prevalence, and other limitations, it is often difficult
to release imaging datasets for secondary analysis, research, and diagnosis. Third, due to an
incomplete understanding of diseases. This could be either because the disease is emerging
or because no mechanism is in place to systematically collect data about the prevalence and
incidence of the disease. Due to the latter two conditions, even unlabeled data is limited.
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An example of the former is COVID-19, when despite collecting chest X-ray data spanning
decades, the samples lacked data for COVID-19 (Sriram et al. (2021)), while an example
of the latter is autoimmune diseases. Statistically, autoimmune diseases affect 3% of the
US population or 9.9 million US citizens. There are still major outstanding research ques-
tions for autoimmune diseases regarding the presence of different cell types and their role
in inflammation at the tissue level. Studying autoimmune diseases is critical because au-
toimmune diseases affect a large part of society, and these conditions have been on the rise
recently (Galeotti and Bayry (2020); Lerner et al. (2015); Ehrenfeld et al. (2020)). Other
fields like cancer and MRI image analysis have benefited from the application of artificial
intelligence (AI). To mitigate this problem, transfer learning has been the de facto solution.
In transfer learning, an architecture trained on natural imaging datasets, such as ImageNet,
is utilized and then fine-tuned on the medical imaging dataset. The emergence of other pow-
erful paradigms, such as self-supervised learning, provides a better alternative. Pretraining
with self-supervised techniques is label-free, wherein a deep neural network learns useful
priors by solving a pre-training task on unlabeled images. This is especially useful in fields
with limited labeled data availability or if the cost and effort required to provide annotations
are high. With the help of these valuable and transferable priors, self-supervised training
can benefit from applying self-supervised techniques.

But existing representation/self-supervised techniques are highly compute-intensive and
require multiple GPU servers over multiple days. This limits their applicability, making
them inaccessible to the general practitioner. One way to mitigate this issue is by reducing
the number of pre-training epochs. During self-supervised pre-training, the deep learning
model solves an auxiliary task such as image reconstruction and similarity/dissimilarity
optimization in a label-free manner Chen et al. (2020a). By solving the auxiliary task
(without labels), the model learns helpful priors that it can reuse during the downstream
task to perform better at that task. But even the state-of-the-art self-supervised techniques
suffer a marked reduction in performance when trained for fewer pre-training epochs. These
techniques are pre-trained with a large batch size of 1024 or larger Caron et al. (2021); He
et al. (2022); Grill et al. (2020a). In some cases, these batch sizes are several times larger
than the size of the entire medical imaging dataset. Applying self-supervised techniques
with large batch sizes is particularly challenging due to minimal data availability (labeled
and unlabeled images). For example, the median dataset size for autoimmune diseases is
99-540 samples Tsakalidou et al. (2022); Stafford et al. (2020). Due to these extremely
small sizes, sometimes it is impossible to run large batch sizes. Existing self-supervised
techniques drop a significant performance when used with small batch sizes. For example,
state-of-the-art DINO Caron et al. (2021) drops classification performance by as much as
25% when trained with a reduced batch size of 8.

To address these issues and improve the applicability of self-supervised learning for med-
ical imaging, we propose to combine CNN and Transformer in a response-based siamese
contrastive method. With this approach, the extracted representations of each input image
are compared across two branches representing each architecture (see Figure 1). By trans-
ferring features sensitive to translation equivariance and locality from CNN to Transformer,
our proposed approach - CASS, learns more predictive data representations in limited data
scenarios where a Transformer-only model cannot find them. We studied this quantitatively
and qualitatively in Section 5.
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Generalizable Insights about Machine Learning in the Context of Healthcare

• We introduceCrossArchitectural - Self Supervision (CASS), a siamese CNN-Transformer
approach for learning improved data representations in a self-supervised setting through
architecture invariance instead of augmentation invariance. We study the efficacy of
our approach in limited data availability in the medical image analysis domain 1

• We propose the use of CASS for analysis of autoimmune diseases such as dermato-
myositis and demonstrate an improvement of 2.55% compared to the existing state-of-
the-art self-supervised approaches. To our knowledge, the autoimmune dataset con-
tains 198 images and is the smallest known dataset studied in self-supervised learning.

• As most of the existing self-supervised techniques have been studied on natural imag-
ing datasets, their study and applicability in medical imaging has been limited. We
evaluate CASS and DINO on three challenging medical image analysis problems (au-
toimmune disease cell classification, brain tumor classification, and skin lesion classi-
fication) on three public datasets (Dermofit Project Dataset Fisher and Rees (2017),
brain tumor MRI Dataset Cheng (2017); Kang et al. (2021) and ISIC 2019 Tschandl
et al. (2018); Gutman et al. (2018); Combalia et al. (2019)) and find that CASS im-
proves classification performance (F1 Score and Recall value) over the existing state
of the art self-supervised techniques by an average of 3.8% using 1% label fractions,
5.9 % with 10% label fractions and 10.13% with 100% label fractions. We also com-
pare CASS with an additional contrastive technique BYOL Grill et al. (2020b) and a
reconstructive self-supervised technique MAE He et al. (2022).

• Existing methods also suffer a severe drop in performance when trained for a reduced
number of epochs or batch size (Caron et al. (2021); Grill et al. (2020b); Chen et al.
(2020a)). We show that CASS is robust to these changes in Sections 5.3.1.

• New state-of-the-art self-supervised techniques often require significant computational
requirements. This is a major hurdle as these methods can take around 20 GPU days
to train Azizi et al. (2021a). This makes them inaccessible in limited computational
resource settings. CASS, on average, takes 69% less time than the existing state-of-
the-art methods. We further expand on this result in Section 5.

2. Related Work

2.1. Neural Network Architectures for Image Analysis

CNNs are a famous architecture of choice for many image analysis applications Khan et al.
(2020). CNNs learn more abstract visual concepts with a gradually increasing receptive
field. They have two favorable inductive biases: (i) translation equivariance resulting in
the ability to learn equally well with shifted object positions, and (ii) locality resulting in
the ability to capture pixel-level closeness in the input data. CNNs have been used for
many medical image analysis applications, such as disease diagnosis Yadav and Jadhav
(2019) or semantic segmentation Ronneberger et al. (2015). To address the requirement of

1. We have open-sourced our code at https://github.com/pranavsinghps1/CASS
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additional context for a more holistic image understanding, the Vision Transformer (ViT)
architecture Dosovitskiy et al. (2020) has been adapted to images from language-related
tasks and recently gained popularity Liu et al. (2021b, 2022a); Touvron et al. (2021). In a
ViT, the input image is split into patches treated as tokens in a self-attention mechanism.
Compared to CNNs, ViTs can capture additional image context but lack ingrained inductive
biases of translation and location. While CNNs have these inductive biases as a prior,
Transformers learn them over training. As a result, ViTs typically outperform CNNs on
larger datasets d’Ascoli et al. (2021).

2.1.1. Cross-architecture Technqiues

As CNNs and Transformers both have their own sets of pros and cons. Multiple cross-
architecture techniques have been proposed with the aim of combining the features of CNNs
and Transformers; they can be classified into two categories (i) Hybrid cross-architecture
techniques and (ii) Siamese cross-architecture techniques. Hybrid cross-architecture tech-
niques combine parts of CNNs and Transformers in some capacity for a single model, allow-
ing architectures to learn unique representations. ConViT d’Ascoli et al. (2021) combines
CNNs and ViTs using gated positional self-attention (GPSA) to create a soft convolution
similar to inductive bias and improve upon the capabilities of Transformers alone. More
recently, the training regimes and inferences from ViTs have been used to design a new
family of convolutional architectures - ConvNext Liu et al. (2022b), outperforming bench-
marks set by ViTs in classification tasks. Li et al. (2021) further simplified the procedure to
create an optimal CNN-Transformer using their self-supervised Neural Architecture Search
(NAS) approach.

On the other hand, siamese cross-architecture techniques combine CNNs and Trans-
formers without any changes to their architecture to help both of them learn better repre-
sentations. Gong et al. (2022) used CNN and Transformer pairs in a consistent teaching
knowledge distillation format for audio classification and showed that cross-architecture
distillation makes distilled models less prone to overfitting and also improves robustness.
Compared with the CNN-attention hybrid models, cross-architecture knowledge distillation
is more effective and requires no model architecture change. Similarly, Guo et al. (2022)
also used a 3D-CNN and Transformer to learn strong representations and proposed a self-
supervised learning module to predict an edit distance between two video sequences in the
temporal order.

2.2. Self-Supervised Learning

Most existing self-supervised techniques can be classified into contrastive and reconstruction-
based techniques. Traditionally, contrastive self-supervised techniques have been trained by
optimizing the distance between representations of different augmented views of the same
image (‘positive pairs’) and representations of augmented views from different images (‘neg-
ative pairs’) He et al. (2020); Chen et al. (2020b); Caron et al. (2020b). But this is highly
memory intensive as we need to track positive and negative pairs. Recently, Bootstrap Your
Own Latent (BYOL) Grill et al. (2020b) and DINO Caron et al. (2021) have improved upon
this approach by eliminating the memory banks. The premise of using negative pairs is to
avoid collapse. Several strategies have been developed with BYOL using a momentum en-
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coder, Simple Siamese (SimSiam) Chen and He (2021) a stop gradient, and DINO applying
the counterbalancing effects of sharpening and centering to avoid collapse. Techniques rely-
ing only on positive pairs are much more efficient than the ones using positive and negative
pairs. Recently, there has been a surge in reconstruction-based self-supervised pretraining
methods with the introduction of MSN Assran et al. (2022b) and MAE He et al. (2022).
These methods aim to learn semantic knowledge of the image by masking some part of it
and then predicting the masked portion during pretraining.

2.2.1. Self-supervised Learning and Medical Image Analysis

As mentioned in Section 1, natural image datasets like ImageNet are commonly used for
benchmarking and comparing self-supervised techniques. But most natural datasets are
balanced and have sizeable inter-class variability. This is not representative of real-world
data, especially in medical imaging, characterized by class imbalance and slight inter-class
variance Cassidy et al. (2022). To improve their performance, some self-supervised methods
use batch-level statistics that help them when applied to balanced datasets but limit their
performance on unbalanced datasets. Batch statistic-dependent methods have been found
to drop significant performance for image classification tasks when trained by artificially
inducing class imbalance Assran et al. (2022a). This prior of some self-supervised techniques
like MSN Assran et al. (2022b), SimCLR Chen et al. (2020a), and VICreg Bardes et al.
(2021) limits their applicability on imbalanced datasets, especially in the case of medical
imaging.

Existing self-supervised techniques typically require large batch sizes and datasets to
learn meaningful priors. When these conditions are not met, a marked reduction in per-
formance is demonstrated Caron et al. (2021); Chen et al. (2020a); Caron et al. (2020a);
Grill et al. (2020b). Self-supervised learning approaches are practical in big data medi-
cal applications Ghesu et al. (2022); Azizi et al. (2021b), such as analysis of dermatology
and radiology imaging. In more limited data scenarios (3,662 images - 25,333 images),
Matsoukas et al. (2021) reported that ViTs outperform their CNN counterparts when self-
supervised pre-training is followed by supervised fine-tuning. Transfer learning favors ViTs
when applying standard training protocols and settings. Their study included running the
DINO Caron et al. (2021) self-supervised method over 300 epochs with a batch size of 256
with ImageNet initialization. However, questions remain about the accuracy and efficiency
of using existing self-supervised techniques on datasets whose entire size is smaller than
their peak performance batch size. In some instances, gathering sufficient unlabeled data
for pertaining is impossible for reasons mentioned in Section 1. For example, in the case
of autoimmune diseases, due to a lack of existing pipelines and the rarity of the diseases
Singh and Cirrone (2023), even unlabelled data is unavailable for pre-training; this restricts
the applicability of the existing self-supervised methods. Also, since existing self-supervised
methods are extremely computation intensive, from a general practitioner’s perspective with
limited computational power raises the concern of how these methods could be leveraged
for their practical application. While transfer learning provides a solution, pre-training
with these takes can further improve performance on top of transfer learning. But for that,
self-supervised techniques have to be more accessible. Adoption and faster development of
self-supervised paradigms will only be possible when they become easy to plug and play
with limited computational power.
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In this work, we explore these questions by designing CASS, a novel self-supervised
approach developed with the core values of efficiency and effectiveness. In simple terms,
we combine CNN and Transformer in a response-based siamese contrastive method by re-
ducing similarity to combine the abilities of CNNs and Transformers. This approach was
initially designed for a 198-image dataset for muscle biopsies of inflammatory lesions from
patients with dermatomyositis - an autoimmune disease. The benefits of this approach
are illustrated by challenges in diagnosing autoimmune diseases due to their rarity, limited
data availability, and heterogeneous features. Consequently, misdiagnoses are common, and
the resulting diagnostic delay plays a significant factor in their high mortality rate. Au-
toimmune diseases share commonalities with COVID-19 regarding clinical manifestations,
immune responses, and pathogenic mechanisms. Moreover, some patients have developed
autoimmune diseases after COVID-19 infection Liu et al. (2020). Despite this increasing
prevalence, the representation of autoimmune diseases in medical imaging and deep learning
is limited.

3. Methods

We start by motivating our method before explaining it in detail (in Section 3.1). Tradi-
tionally, contrastive self-supervised methods have used different augmentations of the same
image to create positive pairs. These were then passed through the same architectures but
with a different set of parameters Grill et al. (2020b). In Caron et al. (2021), the authors
introduced image cropping of different sizes to add local and global information. They also
used different operators and techniques to avoid collapse, as described in Section 2.2.

Through architectural differences, we explore an alternative approach to creating posi-
tive pairs with CASS. Raghu et al. (2021) in their study suggested that for the same input,
Transformers and CNNs extract different representations. They conducted their study by
analyzing the CKA (Centered Kernel Alignment) for CNNs and Transformer using ResNet
He et al. (2016) and ViT (Vision Transformer) Dosovitskiy et al. (2020) family of encoders,
respectively. They found that Transformers have a more uniform representation across all
layers than CNNs. They also have self-attention, enabling global information aggregation
from shallow layers and skip connections that connect lower layers to higher layers, promis-
ing information transfer. Hence, lower and higher layers in Transformers show much more
similarity than in CNNs. The receptive field of lower layers for Transformers is more ex-
tensive than in CNNs. While this receptive field gradually grows for CNNs, it becomes
global for Transformers around the midway point. Transformers don’t attend locally in
their earlier layers, while CNNs do. Using local information earlier is essential to restore
intricate details. CNNs have a more centered receptive field than a more globally spread re-
ceptive field of Transformers. Hence, representations drawn from the same input will differ
for Transformers and CNNs. Until now, self-supervised techniques have used only one kind
of architecture at a time, either a CNN or Transformer. But differences in the representa-
tions learned with CNN and Transformers inspired us to create positive pairs using different
architectures or feature extractors rather than a different set of augmentations. This, by
design, avoids collapse as the two architectures will never give the exact representation as
output. By contrasting their extracted features at the end, we hope to help the Transformer
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learn representations from CNN and vice versa. This should help both the architectures
to learn better representations and learn from patterns that they would miss. We verify
this by studying attention and feature maps from supervised and CASS-trained CNN and
Transformers in Appendix C.4

3.1. Description of CASS

CASS aims to extract and learn representations in a siamese self-supervised way similar to
BYOL Grill et al. (2020a) and DINO Caron et al. (2021). But unlike BYOL and DINO, an
image is passed through a common set of augmentations to achieve this. The augmented
image is simultaneously passed through a CNN and Transformer to create positive pairs.
The output logits from the CNN and Transformer are then used to find cosine similarity
loss (equation 1). This is the same loss function as used in BYOL Grill et al. (2020a).
Furthermore, the intuition of CASS is very similar to that of BYOL. In BYOL, the target
and the online arm are differently parameterized to avoid collapse to a trivial solution, and
an additional predictor is used with the online arm. They compared this setup to that of
GANs, where the joint optimization of both arms to a typical value was impossible due
to differences in the arms. Analogously, In CASS, instead of using an additional MLP
on top of one of the arms and differently parameterizing them, we use two fundamentally
different architectures. Since the two architectures give different output representations,
as mentioned in Raghu et al. (2021), the model doesn’t collapse. We also report results
for CASS using a different set of CNNs and Transformers in Appendix B.6 and Section
5, and not a single case of the model collapse was registered. With this approach, we
reduce the computational load by (i) reducing the number of times augmentations are
applied. Instead of traditional contrastive techniques like BYOL and DINO, we apply
augmentations only once. (ii) In DINO and BYOL, the student network’s parameters are a
lagging function of the teacher network’s parameters; this requires these techniques to keep
track of these parameters and then transfer them every epoch, while in CASS, both the
arms are independent, and thus avoid this extra computation.

loss = 2− 2× F(R)×F(T) (1)

where, F(x) =

N∑
i=1

(
x

(max (∥x∥2) , ϵ)

)
In Equation 1, R and T represent embeddings from CNN and Transformer, respectively.
We use the same set of parameters for both architectures’ optimizer and learning schedule.
We also use stochastic weigh averaging (SWA) Izmailov et al. (2018) with Adam optimizer
and a learning rate of 1e-3. For the learning rate, we use a cosine schedule with a maximum
of 16 iterations and a minimum value of 1e-6. ResNets are typically trained with Stochastic
Gradient Descent (SGD), and our use of the Adam optimizer is quite unconventional based
on experiments by Dosovitskiy et al. (2020). Furthermore, unlike existing self-supervised
techniques, there is no parameter sharing between the two architectures.

In Figure 1, we show CASS on top and DINO Caron et al. (2021) at the bottom.
Comparing the two, CASS does not use any extra mathematical treatment used in DINO
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to avoid collapse, such as centering and applying the softmax function on the output of
its student and teacher networks. We also provide an ablation study using a softmax and
sigmoid layer for CASS in Appendix B.5. After training CASS and DINO for one cycle,
DINO yields only one kind of trained architecture. In contrast, CASS provides two trained
architectures (1 - CNN and 1 - Transformer). CASS-pre-trained architectures perform
better than DINO-pre-trained architectures in most cases, as further elaborated in Section
5.

Figure 1: (Top) In our proposed self-supervised architecture - CASS, R represents ResNet-
50, a CNN and T in the other box represents the Transformer used (ViT); X is the
input image, which becomes X’ after applying augmentations. Note that CASS
applies only one set of augmentations to create X’. X’ is passed through both arms
to compute loss, as in Equation 1. This differs from DINO, which passes different
augmentation of the same image through networks with the same architecture
but different parameters. The output of the teacher network is centered on a
mean computed over a batch. Another key difference is that in CASS, the loss is
computed over logits; meanwhile, in DINO, it is computed over softmax output.
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4. Experimental Details

4.1. Datasets

Unless specified otherwise, we split the datasets into three splits - training, validation, and
testing following the 70/10/20 split strategy. We expand on our rationale for datasets in
Appendix C.4.5, along with sample images from each of the datasets used.

Techniques Backbone
Testing F1 score
10% 100%

DINO ResNet-50 0.8237±0.001 0.84252±0.008
CASS ResNet-50 0.8158±0.0055 0.8650±0.0001
Transfer ResNet-50 0.819±0.0216 0.83895±0.007

DINO ViT B/16 0.8445±0.0008 0.8639± 0.002
CASS ViT B/16 0.8717±0.005 0.8894±0.005
Transfer ViT B/16 0.8356±0.007 0.8420±0.009

Table 1: Results for autoimmune biopsy slides dataset. In this table, we compare the F1
score on the test set. We observed that CASS outperformed the existing state-of-
art self-supervised method using 100% labels for CNN and Transformers. Although
DINO outperforms CASS for CNN with 10% labeled fraction. Overall, CASS
outperforms DINO by 2.2% for 100% labeled training for CNN and Transformer.
For Transformers in 10% labeled training CASS’ performance was 2.7% better
than DINO.

Dataset DINO CASS

Autoimmune 1 H 13 M 21 M
Dermofit 3 H 9 M 1 H 11 M
Brain MRI 26 H 21 M 7 H 11 M
ISIC-2019 109 H 21 M 29 H 58 M

Table 2: Self-supervised pretraining time comparison for 100 epochs on a single RTX8000
GPU. In this table, H represents hour(s), and M represents minute(s).

Autoimmune diseases biopsy slides (Singh and Cirrone (2023); Van Buren et al.
(2022)) consists of slides cut from muscle biopsies of dermatomyositis patients stained
with different proteins and imaged to generate a dataset of 198 TIFF images set from 7
patients. The presence or absence of these cells helps to diagnose dermatomyositis. Multiple
cell classes can be present per image; this is a multi-label classification problem. Our task
here was to classify cells based on their protein staining into TFH-1, TFH-217, TFH-Like,
B cells, and others. We used the F1 score as our metric for evaluation, as employed in
previous works by Singh and Cirrone (2023); Van Buren et al. (2022). These RGB images
have a consistent size of 352 by 469.
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Dermofit dataset (Fisher and Rees (2017)) contains standard RGB images captured
through an SLR camera indoors with ring lightning. There are 1300 image samples, clas-
sified into ten classes: Actinic Keratosis (AK), Basal Cell Carcinoma (BCC), Melanocytic
Nevus / Mole (ML), Squamous Cell Carcinoma (SCC), Seborrhoeic Keratosis (SK), In-
traepithelial carcinoma (IEC), Pyogenic Granuloma (PYO), Haemangioma (VASC), Der-
matofibroma (DF) and Melanoma (MEL). This dataset comprises images of different sizes;
no two images are the same size. They range from 205×205 to 1020×1020 in size. Our
pretext task is multi-class classification, and we use the F1 score as our evaluation metric
on this dataset.

Brain tumor MRI dataset (Cheng (2017); Amin et al. (2022); Nickparvar (2021))
7022 images of human brain MRI classified into four classes: glioma, meningioma, no tumor,
and pituitary. The dataset curator have created predefined training and testing splits. We
followed their splits, 5,712 images for training and 1,310 for testing. Since this was a
combination of multiple datasets, the size of images varies throughout the dataset from
219×234 to 512×512. The pretext of the task is multi-class classification, and we used the
F1 score as the metric.

ISIC 2019 (Tschandl et al. (2018); Gutman et al. (2018); Combalia et al. (2019))
consists of 25,331 images across eight different categories - melanoma (MEL), melanocytic
nevus (NV), Basal cell carcinoma (BCC), actinic keratosis(AK), benign keratosis(BKL),
dermatofibroma(DF), vascular lesion (VASC) and Squamous cell carcinoma(SCC). This
dataset contains images of size 600 × 450 and 1024 × 1024. The distribution of these labels
is unbalanced across different classes with hard-to-distinguish classes. For evaluation, we
followed the metric in the official competition, i.e., balanced multi-class accuracy value,
which is semantically equal to recall. We provide a mathematical representation of all the
metrics used in Appendix C.7.

4.2. Self-supervised learning

We studied and compared results between DINO and CASS-pre-trained CNNs and Trans-
formers. In addition to these, we also compared results with Bootstrap Your Latent BYOL
Grill et al. (2020a), and Masked Auto-Encoders (MAE) He et al. (2022) on the autoimmune
and Dermofit datasets in Section 5.4 and Appendix 5.5, respectively. For each experiment,
we pre-trained for 100 epochs with a batch size of 16. We ran these experiments on an
internal cluster with a single GPU unit (NVIDIA RTX8000) with 48 GB video RAM, 2
CPU cores, and 64 GB system RAM. We provide an extended list of Protocols and hyper-
parameters in Appendix C.5.

4.3. End-to-end fine-tuning

To evaluate the utility of the learned representations, we use the self-supervised pre-trained
weights for the downstream classification tasks. While performing the downstream fine-
tuning, we perform the entire model (E2E fine-tuning). The test set metrics were used as
proxies for representation quality. We trained the entire model for a maximum of 50 epochs
with an early stopping patience of 5 epochs. For supervised fine-tuning, we used Adam
optimizer with a cosine annealing learning rate starting at 3e-04. Since almost all medical
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datasets have some class imbalance, we applied class distribution normalized Focal Loss Lin
et al. (2017) to navigate class imbalance.

Additionally, we fine-tuned the models using different label fractions during E2E fine-
tuning, i.e., 1%, 10%, and 100& label fractions. For example, if a model is trained with a
10% label fraction, then that model will have access only to 10% of the training dataset
samples and their corresponding labels during the E2E fine-tuning after initializing weights
after pretraining.

5. Results and Discussion

5.1. Compute and Time analysis Analysis

We ran all the experiments on a single NVIDIA RTX8000 GPU with 48GB video memory.
In Table 2, we compare the cumulative training times for a CNN and Transformer self-
supervised training with DINO and CASS. We observed that CASS took an average of 69%
less time than DINO.

5.2. Results on the four medical imaging datasets

We did not perform 1% finetuning for the autoimmune diseases biopsy slides of 198 images
because using 1% images would be too small a number to learn anything meaningful, and
the results would be highly randomized. Similarly, we did not perform 1% fine-tuning for
the dermofit dataset as the training set was too small to draw meaningful results with just
ten samples. We averaged the results over five different runs with different seed values. We
presented the results in a 95% confidence interval on the four medical imaging datasets in
Tables 1, 3, 4, and 5. We also compared the standard transfer learning approach (repre-
sented by Transfer in Tables 1, 3, 4, and 5) with the self-supervised approach. We observed
that self-supervised pre-training performs better than transfer learning in all cases by a
margin. We also observed that CASS improves upon the classification performance of ex-
isting state-of-the-art self-supervised method DINO by 3.8% with 1% labeled data, 5.9%
with 10% labeled data, and 10.13% with 100% labeled data. We also compare BYOL and
MAE in Section 5.4 and Section 5.5, respectively.

5.3. Ablation Studies

As mentioned in Section 2.2.1, existing self-supervised methods experience a drop in classifi-
cation performance when trained for a reduced number of pretraining epochs and batch size.
We performed ablation studies to study the effect of change in performance for ResNet-50
and ViTB/16 pre-trained with CASS and DINO on the autoimmune dataset. Additional
ablation studies have been provided in Appendix B.

5.3.1. Change in Pretraining Epochs and Batch Size

This section compares the performance change in CASS and DINO when pretrained by
varying the number of epochs or batch size and then E2E finetuned with 100% labels
over the autoimmune dataset. We compared the mean-variance over CNN and Transformer
trained with the two techniques to study the robustness and reported these results in Figure
2.
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Techniques
Testing F1 score
10% 100%

DINO (Resnet-50) 0.3749±0.0011 0.6775±0.0005
CASS (Resnet-50) 0.4367±0.0002 0.7132±0.0003
Transfer (Resnet-50) 0.33±0.0001 0.6341±0.0077

DINO (ViT B/16) 0.332± 0.0002 0.4810±0.0012
CASS (ViT B/16) 0.3896±0.0013 0.6667±0.0002
Transfer (ViT B/16) 0.299±0.002 0.456±0.0077

Table 3: This table contains the results for the dermofit dataset. CASS outperforms both
supervised and existing state-of-the-art self-supervised methods for all label frac-
tions. Parenthesis next to the techniques represents the architecture used; for ex-
ample, DINO(ViT B/16) represents ViT B/16 trained with DINO. In this table,
we compare the F1 score on the test set. We observed that CASS outperformed
the existing state-of-art self-supervised method using all label fractions and for
both the architectures.

Techniques Backbone
Testing F1 score
1% 10% 100%

DINO Resnet-50 0.63405±0.09 0.92325±0.02819 0.9900±0.0058
CASS Resnet-50 0.40816±0.13 0.8925±0.0254 0.9909± 0.0032
Transfer Resnet-50 0.52±0.018 0.9022±0.011 0.9899± 0.003

DINO ViT B/16 0.3211±0.071 0.7529±0.044 0.8841± 0.0052
CASS ViT B/16 0.3345±0.11 0.7833±0.0259 0.9279± 0.0213
Transfer ViT B/16 0.3017 ± 0.077 0.747±0.0245 0.8719± 0.017

Table 4: This table contains results on the brain tumor MRI classification dataset. While
DINO outperformed CASS for 1% and 10% labeled training for CNN, CASS main-
tained its superiority for 100% labeled training, albeit by just 0.09%. Similarly,
CASS outperformed DINO for all data regimes for Transformers, incrementally
1.34% in for 1%, 3.04% for 10%, and 4.38% for 100% labeled training. We observe
that this margin is more significant than for biopsy images. Such results could be
ascribed to the increase in dataset size and increasing learnable information.

Change in Pretraining Epochs The recorded mean-variance in performance for ResNet-
50 and ViTB-16 trained with CASS and DINO with change in the number of pretraining
epochs is 1.79 × 10−4 and 2.265 × 10−4, respectively. Based on these results, we observed
that CASS-trained models have less variance, i.e., they are more robust to change in the
number of pretraining epochs.

Change in Pretraining Epochs We studied the change in performance for batch sizes
8, 16, and 32 on the autoimmune dataset with CASS and DINO. We observe that the
mean-variance in performance for ResNet-50 and ViTB-16 trained with CASS and DINO
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Techniques Backbone
Testing Balanced multi-class accuracy
1% 10% 100%

DINO Resnet-50 0.328±0.0016 0.3797±0.0027 0.493±3.9e-05
CASS Resnet-50 0.3617±0.0047 0.41±0.0019 0.543±2.85e-05
Transfer Resnet-50 0.2640±0.031 0.3070±0.0121 0.35±0.006

DINO ViT B/16 0.3676± 0.012 0.3998±0.056 0.5408±0.001
CASS ViT B/16 0.3973± 0.0465 0.4395±0.0179 0.5819±0.0015
Transfer ViT B/16 0.3074±0.0005 0.3586±0.0314 0.42±0.007

Table 5: Results for the ISIC-2019 dataset. Comparable to the official metrics used in the
ISIC 2019 challenge and previous works Tschandl et al. (2018); Gutman et al.
(2018). The ISIC-2019 dataset is incredibly challenging due to class imbalance
and because it comprises partially processed and inconsistent images with hard-to-
classify classes. We use balanced multi-class accuracy as our metric, semantically
equal to recall value. We observed that CASS consistently outperforms DINO by
approximately 4% for all label fractions with CNN and Transformer.

with change in batch size for CASS and DINO is 0.584× 10−4 and 1.5× 10−4, respectively.
Hence, CASS is much more robust to changes in pretraining batch size than DINO.

5.4. Comparison with BYOL

In addition to comparison with DINO, we compare with an additional contrastive technique
Bootstrap your own Latent - BYOL Grill et al. (2020a) in this section, and a reconstructive
self-supervised technique Masked Auto-encoders or MAE He et al. (2022) in Appendix 5.5.
For these experiments, we pre-trained the models for 100 epochs followed by 50 epochs
of E2E finetuning with 100% using label fraction on the autoimmune and the dermofit
dataset.2

5.5. Comparison with reconstructive self-supervised method - Masked
Autoencoders (MAE)

In this section, we compare the performance of CASS with Masked Autoencoders (MAE)
He et al. (2022). We train CASS, DINO, and MAE on the autoimmune and dermofit
datasets for this experimentation. Since MAE are only available for Vision Transformers,
we compare ViT Base/16 trained with CASS and MAE. For this experiment, we followed the
standard pre-training procedure for 100 epochs and fine-tuning for 50 epochs. We present
the corresponding results for the autoimmune disease dataset and for the dermofit dataset
in Table 7.

2. We attempted to broaden the scope of BYOL by incorporating ViT-Base/16 since BYOL was initially
only implemented for CNNs. However, we were unable to fit the model on an RTX8000. We tried to
reduce the batch size and implement gradient accumulation to accommodate BYOL with ViT on a single
GPU. However, even with a batch size of two (as batch normalization in BYOL would not work with a
smaller batch size) and a gradient accumulation step of eight, we were still unable to fit the model on a
single RTX8000. Therefore, we present the corresponding results on ResNet50 in Table 6.
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(a)

(b)

Figure 2: In Figure a, we report the change in performance concerning the change in the
number of pretraining epochs for DINO and CASS for ResNet-50 and ViTB/16,
respectively. In Figure b, we report the change in performance concerning the
change in the number of pretraining batch sizes for DINO and CASS for ResNet-
50 and ViTB/16, respectively. These ablation studies were conducted on the
autoimmune dataset while keeping the other hyper-parameters the same during
pretraining and downstream finetuning.

Dataset Pretraining Test F1 Score Architecture

Autoimmune
Dataset

BYOL 0.8332±0.0015 ResNet-50
CASS 0.8650±0.0001 ResNet-50
DINO 0.84252±0.008 ResNet-50

Dermofit
Dataset

BYOL 0.6642±0.0026 ResNet-50
CASS 0.7132±0.0003 ResNet-50
DINO 0.6775±0.0005 ResNet-50

Table 6: Comparison of BYOL, CASS, and DINO on the Autoimmune and the Dermofit
dataset using ResNet-50. We observed that CASS outperforms BYOL by about
2.18% on the Autoimmune dataset and by around 5% on the Dermofit dataset.
We also observed that in both cases BYOL performed worse than both CASS and
DINO.
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Dataset Pretraining Test F1 Score Architecture

Autoimmune
Dataset

DINO 0.8639± 0.002 ViT B-16
CASS 0.8894±0.005 ViT B-16
MAE 0.8369±0.0053 ViT B-16

Dermofit
Dataset

DINO 0.6775±0.0005 ViT B-16
CASS 0.7132±0.0003 ViT B-16
MAE 0.5621±0.0049 ViT B-16

Table 7: We observed that CASS performs 8.46% better than MAE on the autoimmune
dataset. Similarly, for performance comparison for CASS and MAE on the Der-
mofit dataset trained from scratch for 100 epochs followed by 50 epochs of end-
to-end finetuning on the dermofit dataset. We observed that CASS outperforms
MAE by around 10% in this scenario.

6. Conclusion

Based on our experimentation with four diverse medical imaging datasets, we conclude
quantitatively that CASS outperforms the state-of-the-art self-supervised methods in most
cases for data-efficient training for CNNs and in all cases for Vision Transformers. On aver-
age, CASS improves classification performance over DINO by 3.8% with 1% labeled data,
5.9% with 10% labeled data, and 10.13% with 100% labeled data, and is trained in 69%
less time. Moreover, CASS is more robust to changes in batch size and pretraining epochs.
Therefore, we can conclude that CASS is computationally efficient for medical image anal-
ysis, performs better, and overcomes some of the shortcomings of existing self-supervised
techniques. CASS, with its increased ease of accessibility and better performance, will cat-
alyze medical imaging research to help improve healthcare solutions and propagate these
advancements in state-of-the-art techniques to deep practical learning in developing coun-
tries and practitioners with limited resources to develop new solutions for underrepresented
and emerging diseases.

Impact of CASS in the context of healthcare Additionally, with CASS, researchers
can begin medical image analysis, even with a small amount of the overall dataset or even
if only a small portion is labeled. This would be highly helpful for emerging and rare
diseases. Reduced reliance on intensive computational resources means large institutions can
reduce computation budgets. Simultaneously, small institutions/practitioners with limited
computing power can also run this state-of-the-art model.

Limitations In this study, we focused extensively on studying the effects and performance
of our proposed method for small dataset sizes and in the context of limited computational
resources. Furthermore, all the datasets used in our experimentation are restricted to aca-
demic and research use only. Although CASS performs better than existing self-supervised
and supervised techniques, it is impossible to determine at inference time (without ground-
truth labels) whether to pick the CNN or the Transformers arm of CASS.

Potential negative societal impact The autoimmune dataset is limited to a specific
institution, and inferences drawn may not apply to other disease variants. Results depend
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on a set of markers and may require additional tests and medical history. Meta-data is not
incorporated in CASS. Application in real-life scenarios requires clearance from health and
safety governing bodies.
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sion classification using ensembles of multi-resolution efficientnets with meta data. Meth-
odsX, 7, 2020.

Florin C Ghesu, Bogdan Georgescu, Awais Mansoor, Youngjin Yoo, Dominik Neumann,
Pragneshkumar Patel, RS Vishwanath, James M Balter, Yue Cao, Sasa Grbic, et al. Self-
supervised learning from 100 million medical images. arXiv preprint arXiv:2201.01283,
2022.

Yuan Gong, Sameer Khurana, Andrew Rouditchenko, and James R. Glass. Cmkd:
Cnn/transformer-based cross-model knowledge distillation for audio classification. ArXiv,
abs/2203.06760, 2022.

18

https://figshare.com/articles/dataset/brain_tumor_dataset/1512427
https://homepages.inf.ed.ac.uk/rbf/DERMOFIT/datasets.htm
https://homepages.inf.ed.ac.uk/rbf/DERMOFIT/datasets.htm


Efficient Representation Learning for Healthcare with Cross-Architectural Self-Supervision

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation:
A survey. International Journal of Computer Vision, 129(6):1789–1819, 2021.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
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Algorithm 1 CASS self-supervised Pretraining algorithm

Input: Unlabeled same augmented images from the training set x′

1: R = cnn(x′) ▷ taking logits output from CNN
2: T = vit(x′) ▷ taking logits output from ViT
3: Calculate loss using Equation 1.
4: Backpropogate loss.

Appendix A. CASS Pretraining Algorithm

The core self-supervised algorithm used to train CASS with a CNN (R) and a Transformer
(T) is described in Algorithm 1. Here, for each sample for the data loader, we perform steps
1 through 4. When repeated once over the entire dataset, this would be one epoch of self-
supervised pretraining. Multiple repetitions of this training over the entire dataset would
yield multiple epochs of self-supervised training. The loss used is described in Equation 1.
Finally, after pretraining, we save the CNN and Transformer for downstream finetuning.

Appendix B. Additional Ablation Studies

B.1. Batch size

We studied the effect of change in batch size on the autoimmune dataset in Section 5.3.1.
Similarly, in this section, we study the effect of varying the batch size on the brain MRI
classification dataset. In the standard implementation of CASS, we used a batch size of 16;
here, we showed results for batch sizes 8 and 32. The largest batch size we could run was 34
on a single GPU of 48 GB video memory. Hence 32 was the biggest batch size we showed
in our results. We present these results in Table 8. Similar to the results in Section 5.3.1,
performance decreases as we reduce the batch size and increases slightly as we increase the
batch size for both CNN and Transformer.

Batch Size CNN F1 Score Transformer F1 Score

8 0.9895±0.0025 0.9198±0.0109
16 0.9909± 0.0032 0.9279± 0.0213
32 0.991±0.011 0.9316±0.006

Table 8: This table represents the results for different batch sizes on the brain MRI clas-
sification dataset. We maintain the downstream batch size constant in all three
cases, following the standard experimental setup mentioned in Appendix C.5 and
C.6. These results are on the test set after E2E fine-tuning with 100% labels.

B.2. Change in pretraining epochs

As standard, we pretrained CASS for 100 epochs in all cases. However, existing self-
supervised techniques are plagued with a marked loss in performance with a reduction
in pretraining epochs. We reported results in Section 5.3.1 to study this effect of CASS
and DINO on the autoimmune dataset. Additionally, in this section, we report results for
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pretraining CASS for 300 epochs on the autoimmune and brain tumor MRI datasets. We
reported these results in Table 9 and 10, respectively. We observed a slight gain in perfor-
mance when we increased the epochs from 100 to 200 but minimal gain beyond that. We
also studied the effect of longer pretraining on the brain tumor MRI classification dataset
and presented these results in Table 10.

Epochs CNN F1 Score Transformer F1 Score

50 0.8521±0.0007 0.8765± 0.0021
100 0.8650±0.0001 0.8894±0.005
200 0.8766±0.001 0.9053±0.008
300 0.8777±0.004 0.9091±8.2e-5

Table 9: Performance comparison over a varied number of epochs on the brain tumor MRI
classification dataset, from 50 to 300 epochs, the downstream training procedure,
and the CNN-Transformer combination is kept constant across all the four exper-
iments, only the number of self-supervised pretraining epochs were changed.

Epochs CNN F1 Score Transformer F1 Score

50 0.9795±0.0109 0.9262±0.0181
100 0.9909± 0.0032 0.9279± 0.0213
200 0.9864±0.008 0.9476±0.0012
300 0.9920±0.001 0.9484±0.017

Table 10: Performance comparison over a varied number of epochs, from 50 to 300 epochs,
the downstream training procedure, and the CNN-transformer combination is
kept constant across all four experiments; only the number of self-supervised
epochs has been changed.

B.3. Augmentations

Contrastive learning techniques are known to be highly dependent on augmentations. Re-
cently, most self-supervised techniques have adopted BYOL Grill et al. (2020b)-like set of
augmentations. DINO Caron et al. (2021) uses the same set of augmentations as BYOL,
along with adding local-global cropping. We use a reduced set of BYOL augmentations for
CASS and a few changes. For instance, we do not use solarize and Gaussian blur. Instead,
we use affine transformations and random perspectives. This section studies the effect of
adding BYOL-like augmentations to CASS. We report these results in Table 11. We ob-
served that CASS-trained CNN is robust to changes in augmentations. On the other hand,
the Transformer drops performance with changes in augmentations. A possible solution
to regain this loss in performance for Transformer with a change in augmentation is using
Gaussian blur, which converges the performance of CNN and the Transformer.
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Augmentation Set CNN F1 Score Transformer F1 Score

CASS only 0.8650±0.0001 0.8894±0.005
CASS + Solarize 0.8551±0.0004 0.81455±0.002

CASS + Gaussian blur 0.864±4.2e-05 0.8604±0.0029
CASS + Gaussian blur + Solarize 0.8573±2.59e-05 0.8513±0.0066

Table 11: We report the F1 metric of CASS trained with a different set of augmentations
for 100 epochs. While CASS-trained CNN fluctuates within a percent of its peak
performance, CASS-trained Transformer drops performance with the addition of
solarization and Gaussian blur. Interestingly, the two arms converged with the
use of Gaussian blur.

B.4. Optimization

In CASS, we use Adam optimizer for both CNN and Transformer. This is a shift from using
SGD or stochastic gradient descent for CNNs. In this Table 12, we report the performance
of CASS-trained CNN and Transformer with the CNN using SGD and Adam optimizer. We
observed that while the performance of CNN remained almost constant, the performance
of the Transformer dropped by almost 6% with CNN using SGD.

Optimiser for CNN CNN F1 Score Transformer F1 Score

Adam 0.8650±0.0001 0.8894±0.005
SGD 0.8648±0.0005 0.82355±0.0064

Table 12: We report the F1 metric of CASS trained with a different set of optimizers for
the CNN arm for 100 epochs. While there is no change in CNN’s performance,
the Transformer’s performance drops around 6% with SGD.

B.5. Using softmax and sigmoid layer in CASS

As noted in Fig 1, CASS doesn’t use a softmax layer like DINO Caron et al. (2021) before
the computing loss. The output logits of the two networks have been used to combine
the two architectures in a response-based knowledge distillation Gou et al. (2021) manner
instead of using soft labels from the softmax layer. In this section, we study the effect of
using an additional softmax layer on CASS. Furthermore, we also study the effect of adding
a sigmoid layer instead of a softmax layer and compare it with a CASS model that doesn’t
use the sigmoid or the softmax layer. We present these results in Table 13. We observed
that not using sigmoid and softmax layers in CASS yields the best result for both CNN and
Transformers.
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Techniques CNN F1 Score Transformer F1 Score

Without Sigmoid or Softmax 0.8650±0.0001 0.8894±0.005
With Sigmoid Layer 0.8296±0.00024 0.8322±0.004
With Softmax Layer 0.8188±0.0001 0.8093±0.00011

Table 13: We observe that performance reduces when we introduce the sigmoid or softmax
layer.

B.6. Change in architecture

B.6.1. Changing Transformer and keeping the CNN same

From Table 14 and 15, we observed that CASS-trained ViT Transformer with the same CNN
consistently gained approximately 4.7% over its supervised counterpart. Furthermore, from
Table 15, we observed that although ViT L/16 performs better than ViT B/16 on ImageNet
( Wightman (2019)’s results), we observed that the trend is opposite on the autoimmune
dataset. Hence, the supervised performance of architecture must be considered before
pairing it with CASS.

Transformer CNN F1 Score Transformer F1 Score

ViT Base/16 0.8650±0.001 0.8894± 0.005
ViT Large/16 0.8481±0.001 0.853±0.004

Table 14: In this table, we show the performance of CASS for ViT large/16 with ResNet-50
and ViT base/16 with ResNet-50. We observed that CASS-trained Transformers,
on average, performed 4.7% better than their supervised counterparts.

Architecture Testing F1 Score

ResnNet-50 0.83895±0.007
ViT Base/16 0.8420±0.009
ViT large/16 0.80495±0.0077

Table 15: Supervised performance of ViT family on the autoimmune dataset. We observed
that as opposed to ImageNet performance, ViT large/16 performs worse than
ViT Base/16 on the autoimmune dataset.

We keep the CNN constant for this experiment and study the effect of changing the
Transformer. For this experiment, we use ResNet as our choice of CNN and ViT base and
large Transformers with 16 patches. Additionally, we also report performance for DeiT-B
Touvron et al. (2020) with ResNet-50. We report these results in Table 16. Similar to Table
14, we observe that by changing Transformer from ViT Base to Large while keeping the
number of tokens the same at 16, performance drops. Additionally, for approximately the
same size, out of DeiT base and ViT base Transformers, DeiT performs much better than
ViT base.
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CNN Transformer CNN F1 Score Transformer F1 Score

ResNet-50
(25.56M)

DEiT Base/16 (86.86M) 0.9902±0.0025 0.9844±0.0048
ViT Base/16 (86.86M) 0.9909±0.0032 0.9279± 0.0213
ViT Large/16 (304.72M) 0.98945±2.45e-5 0.8896±0.0009

Table 16: For the same number of Transformer parameters, DEiT-base with ResNet-50
performed much better than ResNet-50 with ViT-base. The difference in their
CNN arm is 0.10%. On ImageNet DEiT-base has a top1% accuracy of 83.106
while ViT-base has an accuracy of 86.006. We use both Transformers with 16
patches. [ResNet-50 has an accuracy of 80.374]

B.6.2. Changing CNN and keeping the Transformer same

Table 17 and 18 we observed that similar to changing Transformer while keeping the CNN
same, CASS-trained CNNs gained an average of 3% over their supervised counterparts.
ResNet-200 Wightman (2019) doesn’t have ImageNet initialization hence using random
initialization.

CNN Transformer 100% Label Fraction
CNN F1 score Transformer F1 score

ResNet-18 (11.69M)
ViT Base/16 (86.86M)

0.8674±4.8e-5 0.8773±5.29e-5
ResNet-50 (25.56M) 0.8680±0.001 0.8894± 0.0005
ResNet-200 (64.69M) 0.8517±0.0009 0.874±0.0006

Table 17: F1 metric comparison between the two arms of CASS trained over 100 epochs,
following the protocols and procedure listed in Appendix C.5. The numbers in
parentheses show the parameters learned by the network. We use Wightman
(2019) implementation of CNN and transformers, with ImageNet initialization
except for ResNet-200.

Architecture Testing F1 Score

ResnNet-18 0.8499±0.0004
ResnNet-50 0.83895±0.007
ResnNet-200 0.833±0.0005

Table 18: Supervised performance of the ResNet CNN family on the autoimmune dataset.

For this experiment, we use the ResNet family of CNNs and ViT base/16 as our Trans-
former. We use ImageNet initialization for ResNet 18 and 50, while random initialization for
ResNet-200 (As Timm’s library doesn’t have an ImageNet initialization). We present these
results in Table 19. We observed that an increase in the performance of ResNet correlates
to an increase in the performance of the Transformer, implying that there is information
transfer between the two.
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CNN Transformer 100% Label Fraction
CNN F1 score Transformer F1 score

ResNet-18 (11.69M)
ViT Base/16 (86.86M)

0.9913±0.002 0.9801±0.007
ResNet-50 (25.56M) 0.9909±0.0032 0.9279± 0.0213
ResNet-200 (64.69M) 0.9898±0.005 0.9276±0.017

Table 19: F1 metric comparison between the two arms of CASS trained over 100 epochs, fol-
lowing the protocols and procedure listed in Appendix C.5 and C.6. The numbers
in parentheses show the parameters learned by the network. We use Wightman
(2019) implementation of CNN and transformers, with ImageNet initialization
except for ResNet-200.

B.6.3. Using CNN in both arms

We have experimented using a CNN and a Transformer in CASS on the brain tumor MRI
classification dataset. In this section, we present results for using two CNNs in CASS.
We pair ResNet-50 with DenseNet-161. We observe that both CNNs fail to reach the
benchmark set by ResNet-50 and ViT-B/16 combination. Although training the ResNet-
50-DenseNet-161 pair takes 5 hours 24 minutes, less than the 7 hours 11 minutes taken by
the ResNet-50-ViT-B/16 combination to be trained with CASS. We compare these results
in Table 20.

CNN
Architecture in
arm2

F1 Score of ResNet-50 arm F1 Score of arm2

ResNet-50
ViT Base/16 0.9909±0.0032 0.9279± 0.0213
DenseNet-161 0.9743±8.8e-5 0.98365±9.63e-5

Table 20: We observed that for the ResNet-50-DenseNet-161 pair, we train two CNNs in-
stead of one in our standard setup of CASS. Furthermore, none of these CNNs
could match the performance of ResNet-50 trained with the ResNet-50-ViT
base/16 combination. Hence, by adding a Transformer-CNN combination, we
transfer information between the two architectures that would have been missed
otherwise.

B.6.4. Using Transformer in both arms

Similar to the above section, we use a Transformer-Transformer combination instead of a
CNN-Transformer combination. We use Swin-Transformer patch-4/window-12 Liu et al.
(2021a) alongside ViT-B/16 Transformer. We observe that the performance for ViT/B-
16 improves by around 1.3% when we use Swin Transformer. However, this comes at a
computational cost. The swin-ViT combination took 10 hours to train as opposed to 7
hours and 11 minutes taken by the ResNet-50-ViT-B/16 combination to be trained with
CASS. Even with the increased time to train the Swin-ViT combination, it is still almost
50% less than DINO. We present these results in Table 21.
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Architecture in
arm1

Transformer F1 Score of arm1 F1 Score of ViT-B/16 arm

ResNet-50
ViT Base/16

0.9909±0.0032 0.9279± 0.0213
Swin Transformer 0.9883±1.26e-5 0.94±8.12e-5

Table 21: We present the results for using Transformers in both arms and compare the
results with the CNN-Transformer combination.

Appendix C. Result Analysis

C.1. Time complexity analysis

In Section 5.1, we observed that CASS takes 69% less time than DINO. This reduction in
time could be attributed to the following reasons:

1. In DINO, augmentations are applied twice as opposed to just once in CASS. Further-
more, per application, CASS uses fewer augmentations than DINO.

2. Since the architectures used are different, there is no scope for parameter sharing
between them. A major chunk of time is saved by updating the two architectures
after each epoch instead of re-initializing architectures with lagging parameters.

C.2. Qualitative analysis

In this section, we study the feature maps of CNN and attention maps of Transformers
trained using CASS and supervised techniques to expand our study. To reinstate, based
on the study by Raghu et al. (2021), since CNN and Transformer extract different kinds
of features from the same input, combing the two would help us create enriched positive
pairs for self-supervised learning. In doing so, we would transfer embedded information
between the two architectures. We have already seen that this yields better performance
in most cases over four different datasets and with three different label fractions. In this
section, we study this gain qualitatively with the help of feature maps and class attention
maps. Based on our study, we observed that CASS-trained Transformers have a more
local understanding of the image and hence a more connected attention map than purely-
supervised Transformers.

C.3. Feature maps

In this section, we study the feature maps from the first five layers of the ResNet-50 model
trained with CASS and supervision. We extracted feature maps after the Conv2d layer of
ResNet-50. We present the extracted features in Figure 5. We observed that CASS-trained
CNN could retain much more detail about the input image than supervised CNN.

C.4. Class attention maps

This section will explore the average class attention maps for all four datasets. We studied
the attention maps averaged over 30 random samples for autoimmune, dermofit, and brain
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Figure 3: Sample image used from the test set of the autoimmune dataset.

Figure 4: This figure shows the feature map extracted after the first Conv2d layer of ResNet-
50 for CASS (on the left) and supervised CNN (on the right). The color bar shows
the intensity of pixels retained. From the four circles, it is clear that CASS-trained
CNN can retain more intricate details about the input image (Figure 3) more
intensely so that they can be propagated through the architecture and help the
model learn better representations as compared to the supervised CNN. We study
the same feature map in detail for the first five layers after Conv2d in Figure 5.

MRI datasets. Since the ISIC 2019 dataset is highly unbalanced, we averaged the atten-
tion maps over 100 samples so that each class may have an example in our sample. We
maintained the same distribution as the test set, which has the same class distribution as
the overall training set. We observed that CASS-trained Transformers were better able to
map global and local connections due to Transformers’ ability to map global dependencies
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Figure 5: At the top, we have features extracted from the top 5 layers of supervised ResNet-
50, while at the bottom, we have features extracted from the top 5 layers of CASS-
trained ResNet-50. We supplied both networks with the same input ( shown in
Figure 3).

and by learning features sensitive to translation equivariance and locality from CNN. This
helps the Transformer learn features and local patterns that it would have missed.

C.4.1. Autoimmune dataset

We study the class attention maps averaged over 30 test samples for the autoimmune dataset
in Figure 6. We observed that the CASS-trained Transformer has much more attention in
the center than the supervised Transformer. This extra attention could be attributed to
a Transformer on its own inability to map out due to the information transfer from CNN.
Another feature to observe is that the attention map of the CASS-trained Transformer is
much more connected than that of a supervised Transformer.

C.4.2. Dermofit dataset

We present the average attention maps for the dermofit dataset in Figure 7. We observed
that the CASS-trained Transformer can pay much more attention to the center part of the
image. Furthermore, the attention map of the CASS-trained Transformer is much more
connected than the supervised Transformer. So, overall with CASS, the Transformer is not
only able to map long-range dependencies which are innate to Transformers but is also able
to make more local connections with the help of features sensitive to translation equivariance
and locality from CNN.

C.4.3. Brain tumor MRI classification dataset

We present the average class attention maps results in Figure 8. We observed that a
CASS-trained Transformer could better capture long and short-range dependencies than
a supervised Transformer. Furthermore, we observed that a CASS-trained Transformer’s
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Figure 6: To ensure the consistency of our study, we studied average attention maps over
30 sample images from the autoimmune dataset. The left image is the overall
attention map averaged over 30 samples for the supervised Transformer, while
the one on the right is for CASS pretrained Transformer (both after finetuning
with 100% labels).

attention map is much more centered than a supervised Transformer’s. From Figure 12, we
can observe that most MRI images are center localized, so having a more centered attention
map is advantageous in this case.

Figure 7: Class attention maps averaged over 30 samples of the dermofit dataset for super-
vised Transformer (on the left), and CASS pretrained Transformer (on the right).
Both after finetuning with 100% labels.
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Figure 8: Class attention maps averaged over 30 samples of the brain tumor MRI classi-
fication dataset for supervised Transformer (on the left), and CASS pretrained
Transformer (on the right). Both after finetuning with 100% labels.

C.4.4. ISIC 2019 dataset

The ISIC-2019 dataset is one of the most challenging datasets out of the four datasets. ISIC
2019 consists of images from the HAM10000 and BCN 20000 datasets Cassidy et al. (2022);
Gessert et al. (2020). For the HAM1000 dataset, it isn’t easy to classify between 4 classes
(melanoma and melanocytic nevus), (actinic keratosis, and benign keratosis). HAM10000
dataset contains images of size 600×450, centered and cropped around the lesion. Histogram
corrections have been applied to only a few images. The BCN 20000 dataset contains images
of size 1024×1024. This dataset is particularly challenging as many images are uncropped,
and lesions are in difficult and uncommon locations. Hence, in this case, having more
spread-out attention maps would be advantageous instead of a more centered one. From
Figure 9, we observed that a CASS-trained Transformer has a lot more spread attention
map than a supervised Transformer. Furthermore, a CASS-trained Transformer can also
attend the corners far better than a supervised Transformer.

From Figures 6, 7, 8 and 9, we observed that in most cases, the supervised Transformer
had spread out attention, while the CASS trained Transformer has a more ”connected.” at-
tention map. This is primarily because of local-level information transfer from CNN. Hence
we could add some more image-level intuition, with the help of CNN, to the Transformer
that it would have rather missed on its own.

C.4.5. Choice of Datasets

We chose four medical imaging datasets with diverse sample sizes ranging from 198 to 25,336,
along with diverse modalities to study the performance of existing self-supervised techniques
and CASS. Most of the existing self-supervised techniques have been studied on million
image datasets like ImageNet, but medical imaging datasets, on average, are much smaller
than a million images. Furthermore, they are usually imbalanced, and some existing self-
supervised techniques rely on batch statistics, making them learn skewed representations.
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Figure 9: Class attention maps averaged over 100 samples from the ISIC-2019 dataset for
the supervised Transformer (on the left) and CASS-trained Transformer (on the
right). Both after finetuning with 100% labels.

We also include a dataset of emerging and underrepresented diseases with only a few hundred
samples, the autoimmune dataset in our case (198 images). To the best of our knowledge,
no existing literature studies the effect of self-supervised learning on such a small dataset.
Furthermore, we chose the dermofit dataset because all the images are taken using an SLR
camera, and no two images are the same size. Image size in dermofit varies from 205×205
to 1020×1020. MRI images constitute a large part of medical imaging; hence we included
this dataset in our study. So, to incorporate them into our study, we had the Brain tumor
MRI classification dataset. Furthermore, it is our study’s only black-and-white dataset; the
other three datasets are RGB. The ISIC 2019 is a unique dataset containing multiple pairs
of hard-to-classify classes (Melanoma - melanocytic nevus and actinic keratosis - benign
keratosis) and different image sizes - out of which only a few have been prepossessed. It
is a highly imbalanced dataset containing samples with lesions in difficult and uncommon
locations. To give an idea about the images used in our experiments, we provide sample
images from the four datasets used in our experimentation in Figures 10, 11, 12 and 13.

C.5. Self-supervised pretraining

C.5.1. Protocols

• Self-supervised learning was only done on the training data, not the validation data.
We used https://github.com/PyTorchLightning/pytorch-lightning to set the
pseudo-random number generators in PyTorch, NumPy, and (python.random).

• We ran training over five seed values and reported mean results with variance in each
table. We didn’t perform a seed value sweep to extract any more performance Picard
(2021).
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Figure 10: Sample of autofluorescence slide images from the muscle biopsy of patients with
dermatomyositis - a type of autoimmune disease.

Figure 11: Sample images from the Dermofit dataset.

Figure 12: Sample images of brain tumor MRI dataset, Each image corresponds to a pre-
diction class in the data set glioma (Left), meningioma (Center), and No tumor
(Right)
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Figure 13: Sample images from the ISIC-2019 challenge dataset.

• For MAE, BYOL, and DINO implementation, we use Phil Wang’s implementation:
https://github.com/lucidrains/vit-pytorch and https://github.com/lucidrains/
vit-pytorch.

• For the implementation of CNNs and Transformers, we use Timm’s library Wightman
(2019).

• The goal of self-supervision is to provide better initialization; for our set of experi-
ments, we used ImageNet initialization Deng et al. (2009); because ImageNet initial-
izations provide faster convergence and better weight scaling Raghu et al. (2019). In
the case of CASS, the differences in ImageNet learned representations also act as a
scaffolding to avoid collapse.

• After pertaining, an end-to-end finetuning of the pre-trained model was done using
x% labeled data. Where x was either 1, 10, or 100. When fine-tuned with x% labeled
data, the pre-trained model was fine-tuned only on x% data points with corresponding
labels.

C.5.2. Augmentations

• Resizing: Resize input images to 384×384 with bilinear interpolation.

• Color jittering: change the brightness, contrast, saturation, and hue of an image or
apply random perspective with a given probability. We set the degree of distortion to
0.2 (between 0 and 1) and use bilinear interpolation with an application probability
of 0.3.

• Color jittering or applying the random affine transformation of the image, keeping
center invariant with degree 10, with an application probability of 0.3.

• Horizontal and Vertical flip. Each with an application probability of 0.3.

• Channel normalization with a mean (0.485, 0.456, 0.406) and standard deviation
(0.229, 0.224, 0.225).
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C.5.3. Hyper-parameters

• Optimization: We use stochastic weighted averaging over Adam optimizer with learn-
ing rate (LR) set to 1e-3 for both CNN and vision transformer (ViT). This is a shift
from SGD, which is usually used for CNNs.

• Learning Rate: Cosine annealing learning rate is used with 16 iterations and a min-
imum learning rate of 1e-6. Unless mentioned otherwise, this setup was trained over
100 epochs. These were then used as initialization for the downstream supervised
learning. The standard batch size is 16.

C.6. Supervised training

C.6.1. Augmentations

We use the same set of augmentations used in self-supervised pretraining.

C.6.2. Hyper-parameters

• We use Adam optimizer with lr set to 3e-4 and a cosine annealing learning schedule.

• Since all medical datasets have a class imbalance, we address it by using focal loss
Lin et al. (2017) as our choice of the loss function with the alpha value set to 1
and the gamma value to 2. In our case, it uses minimum-maximum normalized class
distribution as class weights for focal loss.

• We train for 50 epochs. We also use a five epoch patience on validation loss to check
for early stopping. This downstream supervised learning setup is kept the same for
CNN and Transformers.

We repeat all the experiments with different seed values five times and then present the
average results in all the tables.

C.7. Description of Metrics

After performing downstream fine-tuning on the four datasets under consideration, we ana-
lyze the CASS, DINO, and Supervised approaches on specific metrics for each dataset. The
choice of this metric is either from previous work or as defined by the dataset provider. For
the Autoimmune dataset, Dermofit, and Brain MRI classification datasets based on prior
works, we use the F1 score as our metric for comparing performance, which is defined as
F1 = 2∗Precision∗Recall

Precision+Recall = 2∗TP
2∗TP+FP+FN

For the ISIC-2019 dataset, as mentioned by the competition organizers, we used the
recall score as our comparison metric, which is defined as Recall = TP

TP+FN
For the above two equations, TP: True Positive, TN: True Negative, FP: False Positive,

and FN: False Negative.
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