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Abstract
Recently proposed encoder-decoder structures for modeling Hawkes processes use transformer-inspired ar-
chitectures, which encode the history of events via embeddings and self-attention mechanisms. These models
deliver better prediction and goodness-of-fit than their RNN-based counterparts. However, they often re-
quire high computational and memory complexity and fail to adequately capture the triggering function
of the underlying process. So motivated, we introduce an efficient and general encoding of the historical
event sequence by replacing the complex (multilayered) attention structures with triggering kernels of the
observed data. Noting the similarity between the triggering kernels of a point process and the attention
scores, we use a triggering kernel to replace the weights used to build history representations. Our estimator
for the triggering function is equipped with a sigmoid gating mechanism that captures local-in-time trigger-
ing effects that are otherwise challenging with standard decaying-over-time kernels. Further, taking both
event type representations and temporal embeddings as inputs, the model learns the underlying triggering
type-time kernel parameters given pairs of event types. We present experiments on synthetic and real data
sets widely used by competing models, and further include a COVID-19 dataset to illustrate the use of
longitudinal covariates. Our results show the proposed model outperforms existing approaches, is more
efficient in terms of computational complexity, and yields interpretable results via direct application of the
newly introduced kernel.

1. Introduction

Temporal point processes are the preferred choice when modeling asynchronous event sequences (Cox and
Isham, 1980). Of particular interest is the Hawkes Process (Hawkes, 1971), a self-exciting point process
that is used in numerous applications. In finance, the Hawkes process is typically used to model market
returns, volatility, and stability (Yang et al., 2018; Lee and Seo, 2017; Bacry et al., 2015). In social media, it is
employed to analyze malicious activity, and actions of users on social media platforms (Alvari and Shakarian,
2019; Rizoiu et al., 2017). More recently, Hawkes processes have become critical in healthcare scenarios, such
as modeling adverse drug reactions, disease progression, and the spread of COVID-19 outbreaks (Bao et al.,
2017; Chiang et al., 2021; Sun et al., 2021).

Hawkes (1971) first introduced the Hawkes process to model the aftershocks of earthquakes. The self-
excitation of the conditional intensity function allowed for modeling the clustered behavior of aftershock
occurrences. Ozaki (1979) introduced the parametric estimation of the intensity function via the likelihood
function. Later, non-parametric approaches based on the expectation-maximization (EM) algorithm have
been proposed to estimate the conditional intensity function (Lewis and Mohler, 2011; Chen and Hall,
2016). Though flexible, these approaches require expensive computational budgets needed to solve additional
ordinary differential equation terms or the choice of the kernel functions needed to estimate the intensity
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Figure 1: The SGHP (sigmoid gated Hawkes process) is computationally efficient, powerful in terms of
predictive performance, and allows for interpretable results via the estimation of pairwise triggering
functions. Note that in a transformer-based Hawkes process, the sigmoid gated kernel is replaced
by a stack of self-attention modules with feed-forward transformations.

function. Pan et al. (2021) introduced an approach based on Gaussian Process (GP) to non-parametrically
model the triggering functions of the point processes. Their work delivers on predictive performance and
interpretability, but lacks the efficiency of non-GP approaches.

Most recent deep learning approaches for modeling event sequences can be grouped into two categories.
These are RNN-based models (Du et al., 2016; Mei and Eisner, 2017; Shchur et al., 2020; Omi et al.,
2019), and Attention-Based models Vaswani et al. (2017); Zhang et al. (2020); Zuo et al. (2020); Zhang
et al. (2022); Gupta and Bedathur (2022); Gupta et al. (2022). Both of these approaches use an encoding-
decoding structure. They model intensity as a non-linear function of the sequence history to summarize
the past events and use feed-forward decoders to infer the conditional intensity, cumulative intensity, or
the conditional probabilities. RNN-based models inherit the known issues associated with RNNs, such
as vanishing or exploding gradients (Pascanu et al., 2013), or the inability to capture long-term or very
short-term dependencies (Zuo et al., 2020). We note however that exploding gradient issues can be largely
alleviated via gradient clipping. Alternatively, attention-based structures can predict arrival times relatively
well, but suffer from high computational and memory requirements. Furthermore, their results can be more
interpretable than RNN-based approaches but are limited to the relative contribution of past events.

Motivated to address the challenges faced by RNN- and attention-based approaches to the modeling
of Hawkes processes, we propose a method that replaces the complex attention mechanisms with a more
efficient, flexible, and interpretable encoding structure. Specifically, our approach replaces the attention
mechanism with the direct estimation of the triggering kernels by taking advantage of the resemblance
between the attention weights used to create the history embedding and the triggering function of the
Hawkes process itself. The resulting encoder is substantially more efficient than both RNNs and multi-
layered attention structures, while being able to learn the triggering kernels of the underlying distribution
directly from data. The proposed kernel uniquely combines a sigmoid gate (Steinruecken et al., 2019) with
the rational quadratic function, thus enabling the learning of a more general family of triggering kernels, such
as local-in-time triggering, as well as the standard decaying-over-time functions. In addition to flexibility,
the proposed sigmoid gated Hawkes process (SGHP) model can accommodate a different triggering kernel for
each pair of event types. Utilizing the event type embeddings introduced by existing attention-based models,
we estimate the triggering function of each event type combination, while preventing the rapid growth of
the parameter set, which typically scales quadratically with the number of event types. Figure 1 compares
the proposed approach with existing transformer-based models.
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Our contributions are as follows: i) We propose an encoder that is inherently more efficient and flexible
than the currently existing transformer-based approaches. We show the flexibility of our model by introducing
a stochastic decoding layer that captures the conditional distributional information and uncertainty around
our arrival time predictions. ii) To the best of our knowledge, this is the first parametric approach that
explores different structures to produce general triggering kernels (without deep architectures) geared toward
point process modeling. Further, the proposed composite kernel is poised to encourage the development of
new kernel mixtures for even more flexible triggering kernel learning. iii) We introduce an efficient way of
estimating kernels for each event type pair via the use of type embeddings that allow interpreting the effect
of observing an event type conditioned on other event types.

To showcase our contributions, we present experiments on both artificial and a wide range of real-world
data; including comparisons with state-of-the-art models. Results indicate that our model outperforms all
the baseline models in terms of arrival time prediction and reproducing underlying triggering kernels, while
being very competitive for event type prediction. We present results on a COVID-19 dataset of the patients
admitted to the emergency department at Duke University Hospital and highlight the interpretability of our
model via the learned triggering kernels for several event type pairings.

Generalizable Insights about Machine Learning in the Context of Healthcare

This work was initially motivated by the need to understand the behavior (journey) of COVID-19 patients
admitted with the emergency department at our institution. Specifically, to better understand and predict
transitions to ICU step-down units, discharge and death. However, the methods are not only very relevant to
healthcare scenarios, but also generalizable and applicable to other settings beyond healthcare (we present
results on three additional real-world datasets, one of which being MIMIC-II), where the interest is the
analysis and prediction with datasets that can be construed as point processes, e.g., sparse time series with
irregular sampling rate.

2. Background

Let S be a sequence of L observed events (timestamps) from K different possible event types. Each sequence
S can be represented as Sn = {(ui, ti)}Ln

i=1, where ui ∈ {1, 2, ...K}, and ui and ti correspond to the type and
timestamp of an observed event, respectively. We use the subscript n to represent an individual sequence,
and i and j to denote events within a given sequence. Our objective is to model the underlying distribution
of the collection of sequences for a given dataset {Sn}Nn=1 of N sequences, as well as predicting the arrival
times and event types of future events conditioned on the history of past events. Similar to other models
in the literature, we assume there are no disruptions in the event sequences, i.e., all occurring events are
observed.

Temporal Point Process Temporal point processes (TPPs) are most often used to model the distribution
of event sequences. Each temporal point process is characterized by its conditional intensity function λ(·),
defined as

λ(t|hj) =
f(t|hj)

1 − F (t|hj)
, (1)

where hj is the history of previous events for ti < j, for j = t, i.e., hj = {(t1, k1), (t2, k2), . . . , (ti, ki)}, f(t|hj)
is the conditional probability density function for the (next) event at time t given the history of the sequence
and F (t|hj) is the corresponding conditional cumulative distribution function.

Hawkes Process The Hawkes process (Hawkes, 1971) is a special case of a TPP with the following
intensity function

λ(t) = µ(t) +
∑
i∈ht

ϕ(t− ti), (2)

where µ(t) is the exogenous background intensity and ϕ(·) is the triggering kernel that allows the intensity
function to depend on past events. Note that (2) is fully additive provided that both µ(t) and ϕ(·) are
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non-negative functions. Moreover, in some practical scenarios, the background intensity is assumed to be
constant (Rasmussen and Williams, 2005). Similarly, for the multivariate (multi-event) case

λk(t) = µk(t) +
∑
i∈ht

ϕkik(t− ti), (3)

where ϕkik(·) represents the triggering kernel of an event of type ki on the current event type k, and µk(t)
is the background intensity for type k.

History Representations via Self Attention Models based on self-attention have been proposed to
capture the pairwise influence of all previous events in a sequence as a means to create historical represen-
tations (Zhang et al., 2020; Zuo et al., 2020). Specifically, the historical representation for event j in the
sequence is represented as follows

hj =

(∑
i<j

f(xj , xi)xi

)
/
∑
i<j

f(xj , xi), (4)

where xj is the latent vector (embedding) of the j-th event in the sequence and is defined below, and f(·, ·)
is a similarity function usually specified as the exponentiated inner product between two embeddings, i.e.,
f(xj , xi) = exp(xT

j xi). Note that other similarity functions are available, however, the exponentiated inner
product is still one of the most popular choices.

Temporal Encoding Attention-based models do not intrinsically capture (positional) information about
the order of the events in a sequence like, for instance, RNN-based models do through recurrence. Zuo
et al. (2020) introduced positional embeddings to account for such information into their encoding architec-
ture. Further, Zhang et al. (2020) modified these embeddings for event sequences by incorporating event
timestamps into the positional embeddings.

These modified positional embeddings, also known as temporal embeddings, are represented as tenci for
the i-th event occurring at time ti. Assuming a temporal embedding in D dimensions, each of its elements,
d, are defined as follows

tenci,d =

{
sin(wdi + ωdti), if d is even

cos(wdi + ωdti), if d is odd
, (5)

where wd is defined as wd = 1/(10, 0002d/D) and depicts the angular frequency of the d-th dimension.
Moreover, ωd is a scaling parameter that controls the weight of the time-shift and is learned from the data.

Event Type Embedding To represent each event type in the sequence, a linear embedding layer is
specified as in Zhang et al. (2020) via eenci = eiW , where eenci is a D-dimensional (dense) vector representing
the embedding for event at time ti, ei its one-hot encoding, and W ∈ RKxD is the embedding matrix, which
is learned from data. Note that there are only K distinct eenci event type embeddings, which (in a slight
abuse of notation) are indexed in eenci over time using the subscript i.

3. Replacing Attention with a Kernel

Below we describe the proposed sigmoid gated kernel and explain how we use it as a replacement for the
attention mechanism in existing architectures (Zuo et al., 2020; Zhang et al., 2020).

Self Attention via the Triggering Function We start by noting the similarity between the weights of
the previous events for the attention mechanism in (2) obtained via f(·, ·), and the triggering kernel ϕkik(·),
for a conventional Hawkes process. Note that the triggering kernel ϕkik(·) captures the extent of the influence
of past events, for ti < t, on the (future) event at time t. Similarly, f(xj , xi) captures the influence of a
past event xi on the future event xj , by proxy, leveraging representations xi and xj , for which we have
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Figure 2: Standard RQ kernel vs. idealized local-effect kernel triggered at t = 2 (top), and examples of
the proposed combination of the RQ kernel and the sigmoid gate in (8) with various parameters
(bottom).

xi = tenci + eenci , that encodes both temporal and event type information Zhang et al. (2020). A significant
difference is that in the standard Hawkes process, a triggering kernel is specified for each event-type pairwise
combination, whereas in models based on the self-attention mechanism, such information is encapsulated
in the event type embedding defined above. Alternatively, we propose to directly learn a flexible triggering
kernel combinations for event types while still considering latent representations for the events in the history
of events. We now define the historical representation for the j-th event in the sequence as follows

hj =
∑
i≤j

qkikj
(|ti − tj |)xi, (6)

where qkikj
(·) is a triggering kernel like in the standard Hawkes processes in (2), one for each pair of event

type combinations, and xi is the embedding of the i-th event obtained from the sum of the event type
and temporal embeddings, xi = tenci + eenci . Note that one can concatenate the embeddings to decouple the
contribution of temporal and event type embeddings. However, based on our experiments we did not observe
a significant increase in performance and chose to use the sum for efficiency purposes. In situations when
longitudinal covariates are available, they can be readily incorporated as xi = [tenci + eenci | uenc

i ], where uenc
i

is the representation for the covariates at time ti (see Section 6 for an example and Appendix D for details).
In (6) we need not to normalize the weights as in (4) because in (6), hj is meant to represent the aggregated,
historical intensity rather than the average historical embedding.

Though for large values of K it may seem inefficient to specify a triggering kernel for each combination, (6)
allows for the behavior of each event type combination to be modeled separately over time, unlike implicitly
done so in attention-based approaches. Below we will show that kernels for all event type combinations can
be obtained efficiently by specifying a flexible kernel whose parameters are set and learned separately for
each event type combination.

Flexible Kernel with Decay and Gating Effects A natural choice for estimating a triggering function
with a decaying effect over time is the squared exponential kernel, i.e., the radial basis function (RBF), which
is widely used in machine learning applications such as kernel machines (Hearst et al., 1998) and Gaussian
processes (Rasmussen and Williams, 2005). Instead, we use the rational quadratic (RQ) kernel since it is a
mixture of infinitely many squared exponential kernels, thus in principle, a more flexible yet easy to compute
generalization of the squared exponential kernel (Rasmussen and Williams, 2005). For a one dimensional
process (with a single event type), the rational quadratic kernel is defined as follows

k(d) = σ2

(
1 +

d2

2αℓ2

)−α

, (7)

where α > 0 and ℓ > 0 control the decay behavior, σ is the scaling parameter, and d is a pairwise distance
function, e.g., d = |ti − tj | in (6).
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The RQ function is suitable for capturing monotonically decaying effects, which are fairly standard in
Hawkes processes. However, underlying triggering kernels in real-world point processes can be often more
complex. As a particular example illustrated in Figure 2, consider a situation where the effect of a past
event on the current event (t = 2) does not decrease as the difference between event times grows, but rather
exhibits a localized behavior (at t = 4) in which the effect is maximized at certain time difference (larger than
zero). Such local effect is not possible to capture with regular decaying functions. To capture these local
effects, we multiply the rational quadratic kernel with a sigmoid gate function, thus allowing the resulting
kernel to capture both decay and local triggering effects. The proposed triggering kernel is then

q(d; θ) = σ2

(
1 +

d2

2αℓ2

)−α(
(1 + ep−d)−s

)
, (8)

where the first term is the rational quadratic kernel defined in (7), the second term is the generalized logistic
function (Gupta and Kundu, 2010), and θ = {σ, α, ℓ, p, s}. We modify the sigmoid function by adding the
parameters p > 0 and s > 0, which denote the location and rate of the change, respectively. As p changes,
the change-point moves across time, while s controls the spread of the change. Moreover, l and α still control
the decay while σ2 is now the scaling parameter of the whole function. Figure 2 illustrates the behavior of (8)
for different parameters choices and how the kernel flexibly models different triggering functions. We note
that there are other ways of flexibly compose kernels, for instance via mixtures of kernels. However, these
approaches require higher computational resources and thus are less convenient than the proposed Sigmoid
gated approach in terms of efficiency. We leave the introduction of more complex mixtures of kernels for
future work.

Efficient Learning of Event Type Kernel Pairs Provided the triggering kernel function being able to
capture decay and local effects as defined above in (8), we can proceed to generalize it for the multivariate
(multi-event) process. Inconveniently, the number of parameters for the triggering kernels scales quadratically
with the number of unique event types, K, which may render the modeling prohibitive even for moderately
large K. Specifically kernel parameters scale with O(PK2), where P is the number of free parameters for
the triggering kernel, i.e., |θ| = 5 in the proposed approach according to (8). For efficiency purposes, we
estimate these parameters with feed-forward networks whose input are the concatenation of type embeddings,
θv|u = g(eencv|u), where eencv|u = [eencv | eencu ] is the concatenation of embeddings for event types v and u, and

g(·) is specified as a collection of separate fully connected networks via

rv|u = softplus(WT
r eencv|u + br), (9)

where rv|u is a component of θ and r = {σ, α, ℓ, p, s}. The mapping in (9) indicates that each parameter
in θ has a corresponding weight vector Wr ∈ RD and bias br ∈ R. As a result, kernel parameters scale
linearly with P and D, i.e., O(PD), thus effectively removing their dependency on K. Further, the softplus
activation function ensures the non-negativity of the parameters. Note that one could also specify a single
multilayer network for all parameters, however, in practice we found it more computationally expensive, but
without substantial performance benefits.

4. Predicting the Next Event

Our model characterizes the underlying distribution of the point process by learning (temporal and event
type) embeddings and the triggering kernels during the encoding stage. This allows for added flexibility in
the decoder architecture. Specifically, by directly emphasizing the prediction of the next event times and
types during the decoding stage, we can boost the predictive ability of the model. Further, we introduce
stochasticity into the decoder to increase the variation (uncertainty) in the predictions and approximate the
predictive conditional distribution function for the arrival times.
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Arrival Time Prediction Given the historical embeddings for each time step, we can focus on predicting
the next arrival time at each step. A straightforward way of obtaining arrival time predictions is to use a
neural network whose input is the historical representation. Such a feed-forward neural network is defined
as

tpredj+1 = softplus(WT
t hj + bt), (10)

where hj is the encoded history vector defined in (6), Wt ∈ RD and bt ∈ R are the weight and bias of the

feed-forward network, respectively. Note that tpredj+1 stands for the arrival time prediction corresponding to
event j + 1, and that we use the information (history representation) we have up to event j to predict the
arrival time for the next time step j + 1. The softplus activation is added to the output layer to ensure the
arrival time predictions stay non-negative.

Adding Stochasticity to Predictions As previously leveraged for generative models with adversarial
learning (Goodfellow et al., 2014; Mirza and Osindero, 2014), we introduce stochasticity into our arrival
time prediction by sampling noise vectors from an easy to sample distribution and adding them to the
history representations. Specifically, the stochastic layer samples noise vectors of size |hj | from a uniform
distribution. Each noise vector is passed through a linear layer before being added to hj , i.e.,

tpredj+1,m = softplus(Wt(Whhj + Wnnm) + bt), (11)

where nm ∼ U[0,1] is a sample from a uniform distribution, and Wh and Wn are specified accordingly to

the feedforward network mentioned above. The collection of M samples {tpredj+1,m}Mm=1 can be thought as

implicitly sampled from the desired predicted conditional distribution, i.e., tpredj+1,m ∼ p(tpredj+1 |tj,m, hj). This

approach effectively allows one to infer the arrival time (conditional) probability density for tpredj+1,m relative
to the observed tj,m, which is similar to the approach in Shchur et al. (2020). Note that it is also possible to

approximate the conditional intensity λ(t|hj) in (1) from the conditional density p(tpredj+1 |tj,m, hj) (see Shchur
et al. (2020) for details).

Since the loss function (defined below) takes the predictions from all of these samples and updates the
parameters of the model based on all of them, we are in principle able to approximate the conditional dis-
tribution of the arrival times. In practice, if distributional predictions are not a priority, we can simply
summarize the M -sample empirical distributions with sample characteristics such as mean, median or stan-
dard deviation. In the experiments, we use the sample mean as our final prediction for the arrival times.
Figure 7 in the Appendix further illustrates how such stochasticity can be used capture the uncertainty
around the arrival time predictions.

Event Type Prediction For multivariate event sequences, predicting the next event type is as important
as predicting the arrival times. Unlike the models that use conditional intensity values of each event type,
we can specify another feed-forward network that uses the history vectors as input to predict the event types
directly. The event prediction is probabilistically defined as follows

p(epredj+1 |hj) = softmax(Wehj + be), (12)

where We ∈ RK×D and be ∈ RK are the weights and the bias of the feed-forward network, hj is the historical

representation of event j defined in (6), and epredj+1 = argmax p(epredj+1 |hj) ∈ (0, 1)K , i.e., the output of the
softmax function that produces event type probabilities that can be converted into predicted event types for
time j + 1.

Loss Function We estimate the underlying distribution of the point process by learning the type embed-
dings and triggering kernels, and use the next arrival times and event type as the target for the objective
function. This allows us to avoid the integral approximations traditionally used in intensity-based decoders
Zhang et al. (2020); Zuo et al. (2020); Shchur et al. (2020) and emphasize the predictive ability.

Since the decoders defined above predict both the arrival times and event types, we ought to specify
two different loss functions to train the model. Specifically, we use the ℓ1 loss for the arrival times and the
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Table 1: Summary statistics of the datasets used in the experiments. Types and length refer to the events
and sequences, respectively.

Dataset Types Mean Length Number of Sequences
Training Validation Test

2D-Hawkes 2 150 3200 400 400
MIMIC-II 75 4 527 58 65
StackOverflow 22 250 4777 530 1326
Retweet 3 109 20000 2000 2000
COVID-19 5 4 3212 450 500

cross-entropy loss for the event types. The complete loss is defined for the prediction of the next event at
each observed timestamp as

LΦ(Sn) =
∑

j

(∣∣t̃predj+1 − tj+1

∣∣+
∑K

k=1yk,j+1 log(pk,j+1)
)
,

where t̃predj+1 is a sample summary from (11), pk,j+1 is the k-th element of p(epredj+1 = k|hj) and yk,j+1 is the
ground truth indicator of whether time j + 1 is of event type k. Moreover, Sn indicates that the loss is for
a single sequence (preventing notation overload), and Φ represents the set of all the parameters needed to
be learned for the model. Precisely, the parameters of i) the triggering kernel parameter estimator defined
in Section 3; ii) the arrival time and event time predictors defined in Section 4; iii) the scaling parameters
of the temporal embeddings in Section 2; and iv) the event type embeddings defined in Section 2. Finally,
for the minimization problem we use the ADAM (Kingma and Ba, 2015), provided it has proven to be
computationally efficient and requiring little tuning compared to alternative algorithms.

5. Related Work

RNN-based approaches have been proposed to model the event sequences. Du et al. (2016) and Mei and
Eisner (2017) model the intensity as a non-linear function of the sequence history by using RNNs to sum-
marize the past events and feed-forward decoders. These approaches provide a flexible estimation of the
conditional intensity function by avoiding strict assumptions on its functional form. However, the lack of a
closed-form solution for the intensity function necessitates computationally expensive approximation tech-
niques such as Monte Carlo to calculate the log-likelihood function values. Shchur et al. (2020) propose to
replace the decoder used in the previous models with a log-normal mixture structure. By focusing on the
conditional density function for the arrival times, they produce a closed-form solution for the expectation of
the process. Their approach avoids expensive approximations and yields efficient sampling of new sequences
at the expense of assuming that all arrival times follow a log-normal distribution.

Models with architectures similar to the transformer (Vaswani et al., 2017) encode the historical influence
of past events with multiple attention layers and attention heads. Zhang et al. (2020) and Zuo et al.
(2020) introduce transformer-based approaches for Hawkes process modeling. These models create history
embeddings based on a scoring function that compares the similarity of input vectors for each event in the
representation space. Though these attention-based structures can predict arrival times relatively well they
still struggle to infer the underlying intensity distribution of the process. Pan et al. (2021) introduces a
GP-based approach to non-parametrically model the triggering functions of the point processes. Their work
provides similar prediction performance to attention-based models and also captures certain event-type
pairing effects, however, it lacks the efficiency of the proposed sigmoid gated approach.
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Figure 3: Comparing triggering kernel predictions across models. The x-axis denotes time and the y-axis
represents the kernel intensities. The sigmoid-gated kernel is able to learn both the exponential
kernel and sinusoidal kernel more accurately.

6. Experiments

We present results on various synthetic and real-world datasets to compare the proposed sigmoid gated
Hawkes process (SGHP) model against state-of-the-art Hawkes process models. Training details can be
found in Appendix C.

Datasets We use a synthetic dataset sampled from a 2D-Hawkes process and three real-word datasets pre-
viously used by the baseline models, namely, MIMIC-II, StackOverflow, and Retweet. Further, we consider
a COVID-19 inpatient dataset collected at Duke University Health System which further includes patient
vitals as covariates. Table 1 provides summary statistics and data splits for all datasets. A detailed explana-
tion of each dataset can be found in Appendix A. Processed datasets and source code are publicly available
at https://github.com/rhenaog/sghp. The original Stack Overflow (Leskovec and Krevl, 2014), Retwitt
(Zhao et al., 2015) and MIMIC-II (Lee et al., 2011) datasets can be found online. The COVID-19 dataset
cannot be made openly available due to institutional constraints, but requests for access can be made and
evaluated on a case by case basis.

6.1. Baseline Models

We consider two attention-based Hawkes process models (Zhang et al., 2020; Zuo et al., 2020) and an RNN-
based log-normal mixture decoder model (Shchur et al., 2020), and a recently introduced GP-based model
(Pan et al., 2021). Further, by replacing the RNN encoder in the original log-normal model with attention
we introduce a new baseline model.

Self Attentive Hawkes Process (SAHP): An attention-based model that uses multiple layers of
multi-headed attention to model the intensity based on historical embeddings (Zhang et al., 2020).

Transformer Hawkes Process (THP): The model by Zuo et al. (2020) is a variant of an attention-
based approach similar to SAHP.

Log-Normal Mixture Model (LMM): The log-normal mixture model (Shchur et al., 2020) is an
intensity-free approach that models the conditional probability distribution of arrival times directly via an
RNN encoder.

LMM with Attention (LMMA): We replace the RNN decoding of the log-normal mixture model
with the attention mechanism proposed in the SAHP model. This simple extension of LMM is introduced
to understand the performance of attention models with an intensity-free formulation. Note that LMMA is
similar to the proposed SGHP in that both use intensity-free formulations, however, SGHP replaces attention
with the proposed triggering kernel.

Self-Adaptable Point Processes with Nonparametric Time Decays (SPRITE): This is a GP-
based approach for modelling point processes (Pan et al., 2021). It does not utilize an encoder-decoder
structure like the other baseline models, but we still include their results on MIMIC, StackOverflow, and
Retweet datasets. Since the authors provide last event type prediction results for prediction accuracy instead
of F1 scores, we only incorporate their arrival time performance metrics (in RMSE).

9
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Table 2: RMSE and F1 Scores for last event type and arrival time predictions.

2-D Hawkes MIMIC-II StackOverflow Retweet COVID
Model RMSE F1 RMSE F1 RMSE F1 RMSE F1 RMSE F1
LMM 2.25 0.573 0.88 0.892 1.46 0.384 0.61 0.544 341.5 0.90
LMMA 2.23 0.550 0.80 0.900 1.49 0.375 0.64 0.528 356.1 0.89
THP 2.42 0.575 0.859 0.877 1.66 0.411 0.18 0.539 374.1 0.93
SAHP 2.29 0.585 0.821 0.646 1.55 0.242 0.12 0.531 - 0.76
SPRITE - - 0.96 - 1.15 - 0.09 - - -
SGHP 2.11 0.610 0.79 0.810 1.30 0.389 0.08 0.605 332.2 0.89

Table 3: APS for mortality on COVID data with (COVID+v) and without patient vitals.

Dataset LMM LMMA THP SAHP SGHP
COVID 0.18 0.16 0.07 0.004 0.12
COVID+v 0.12 0.21 0.1 0.005 0.22

7. Results

Capturing Triggering Kernels We present the estimated kernels for all the models against the ground-
truth triggering functions for the synthetic data and compare the goodness-of-fit to the underlying distribu-
tion. Since our approach learns the parameters for each triggering kernel, we can plot the estimation directly
as a function of time. For the attention-based models, we use the attention scores for each time difference
observed in the data as proxy. We further split these scores across event type pairings. Moreover, to reduce
the fluctuations in the attention-based scores, we pass them through a moving average filter where we take
mean scores over a small time window (t = 0.5). Figure 3 shows the estimates for all models. As expected,
the proposed gated kernel (SGHP) is the best match for all of the underlying triggering kernel pairings.
Importantly, unlike the other models, it can accommodate to different event type pairings and capture both
decaying and local effects.

Sequence Prediction Predicting the next event arrival time is a key objective for event sequences. To
capture the ability all models have to learn from the sequential event information, we report the event
type and event time results for the last observed event in each sequence. Specifically, we report (micro)
F1 scores for event types, except for the COVID data for which a high class imbalance is observed, i.e.,
4% mortality. Instead, results for mortality prediction are provided below using average precision score
as performance metric. For event arrival times, we report the mean squared error (RMSE). Table 2 show
RMSE and F1 scores, respectively, for the last event predictions in the test sets of all datasets and models
being evaluated. In terms of RMSE, the proposed SGHP consistently outperforms the other approaches
expect the StackOverflow dataset, while in terms of event type prediction, SGHP outperforms the others
on the 2-D Hawkes and Retweet datasets and delivers competitive results on MIMIC-II, Stackoverflow and
COVID-19. Interestingly, the best performing event type prediction model in MIMIC-II is LMMA, which
is also introduced in this paper. We hypothesize that our model’s fluctuating event type performance is
related to the number of observed events. More specifically, to event incidence imbalances. For instance, the
mortality rate in the COVID dataset is 4% and some events in the MIMIC-II and StackOverflow dataset
have occurrences in the single digit range. We believe this can be addressed by modifying the event type
predictors and leave it for future work. Overall, results in Table 2 show that the proposed SGHP is highly
competitive in relation to more complex (multilayer attention and recurrent) alternatives once both event
type and arrival time predictions are considered.

Mortality Predictions for Covid-19 Patients Complementing the real-world datasets in Table 2, we
also seek to test the proposed model in a more realistic healthcare setting. Specifically, we compare models
in terms of their ability to predict patient mortality. We treat the mortality prediction as a binary problem,
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Figure 4: Estimated triggering kernels for various combinations of event type pairs for the COVID-19 data.

e.g., death vs. survival. Since there is a significant class imbalance, we report the average precision score
(APS) as opposed to F1 or the area under the receiving operating characteristic (see Appendix B for these).
Moreover, we incorporate patient vitals as longitudinal covariates as a means to showcase that the model
can readily process covariate information. Existing approaches do not consider covariates, but we have
incorporated them as described in Appendix D for a fair comparison. Table 3 shows mortality prediction
results on both variations of the COVID data (with and without vitals). Without covariates, SGHP delivers
average performance and outperforms the other approaches when longitudinal covariates are included.

Model Complexity RNN and attention-based encoders tend to suffer from high complexity and memory
requirements due to the large number of parameters that need to be estimated. To highlight the efficiency
of our model we calculate the number of estimated parameters for all the prediction tasks. It is important
to note that the training speed can also be used as an efficiency metric. However, we argue that the total
runtime is more susceptible to the variation across different settings and frameworks such as TensorFlow,
PyTorch, etc. In contrast, the total number of parameters only depends on the model’s structure and is
fixed across different frameworks. The average estimated parameters (in thousands) across all datasets are
observed as follows, SGHP: 3.1, SAHP: 4.8, LMM: 16.9, LMMA: 17.8, THP: 417.8, and show that our model
requires a significantly smaller number of parameters to deliver comparable or superior performance on all
prediction tasks. Table 6 in Appendix B further details the total number of estimated parameters across all
the data sets.

Kernels Interpretation for COVID Data The estimated triggering kernels for each event type pairing
allows us to interpret the results in terms of intensity functions. Specifically, we report the likelihood of being
admitted to ICU and mortality after observing that a patient is admitted to the ED, ICU, or a step-down
unit. Figure 4 shows the learned triggering kernels for some of these possible transitions. As expected,
the likelihood of mortality is higher for patients already admitted to the ICU, relative to patients in ED
beds or step-down units. Moreover, the likelihood of being admitted to the ICU is much higher for patients
originating from a step-down unit.

8. Conclusion

We introduced a flexible, efficient, and interpretable approach for modeling Hawkes processes with an
encoder-decoder structure. Our approach replaced the complex and more difficult to interpret attention
mechanism with directly learning the underlying triggering kernels of the point processes. The proposed
encoder uniquely combines a regular decaying kernel with a sigmoid gate, thus allowing it to capture a
wide range of triggering functions otherwise not possible with other attention-based approaches. We further
generalized our method for the multivariate Hawkes process and incorporated longitudinal covariates into
the temporal process characterization.

Limitations Though we showed that the proposed parametric formulation of the triggering kernel is
competitive with nonparametric formulations, that may not always be the case, thus identifying practical
scenarios where, in principle, more general nonparametric specifications will be of interest. Further, addi-
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tional work is needed to better understand and leverage the availability of longitudinal covariates to improve
sequence and event type predictions. Finally, though we provided proof-of-principle interpretation of the
estimated triggering kernels on the COVID-19 data, comprehensive quantitative evaluation will be needed
if such interpretations were to be used to impact clinical care.
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Appendix A. Dataset Details

A.1. Synthetic Dataset

We use the same 2D Hawkes dataset used by in SAHP (Zhang et al., 2020). For reproducibility, we resampled
the dataset from the tick library with a fixed random seed. Below we provide the formulation for each
triggering function in the synthetic dataset. The baseline intensities are µ1 = 0.1 and µ2 = 0.2. There are
three regular decaying kernels and a sinusoidal kernel with a local effect. Figure 7 illustrates each triggering
kernel.

ϕ11(t) = 0.2 × t(0.5 + t)−1.3

ϕ12(t) = 0.03 × e−0.3t

ϕ12(t) = 0.05 × e−0.2t + 0.16 × e−0.8t

ϕ22(t) = max
(
0, sin(t)/8)

)
for 0 ≤ t ≤ 4

(13)

A.2. Real World Data Sets

Stackoverflow (SOF): The data set consists of users of the famous question-and-answer website Stack
Overflow. Users get medals based on their questions or answers, e.g., good question, good answer, etc. Each
user is modeled as a sequence with event types representing medals obtained over time.

14
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Table 5: F1 results for last event type prediction for the COVID data with and without patient vitals
(COVID+v).

Dataset LMM LMMA THP SAHP SGHP
COVID 0.901 0.888 0.932 0.762 0.888
COVID+v 0.886 0.901 0.921 0.793 0.893

Figure 6: ROC and Precision-Recall curves for mortality prediction using the COVID-19 dataset.

Mimic-II (MMC): This electronic healthcare records dataset tracks the journey of patients through
their hospital intensive care unit (ICU) stay over a period of seven years. Each patient sequence consists of
timestamps and diagnoses for each visit.

Retweets (RT): The dataset tracks re-tweets made on particular tweets on the social media website
Twitter. Every time a tweet is re-tweeted, the popularity of the re-tweeter and the timestamp of the retweet
are recorded. There are three different re-tweeter categories based on their number of followers. Due to the
wide range of the inter-arrival times, arrival time results are made relative by scaling over the maximum
inter-arrival time.

COVID-19 Emergency Department (COVID): This dataset tracks the journey of COVID-19 pa-
tients admitted for patient care at Duke University Hospital Emergency Department (ED) between January
of 2020 and December of 2021. We consider five different event types, namely, admission to ED for patient
care, admission to ICU, admission to a step-down unit, discharge, and death. Further, the dataset also in-
cludes vitals measured between events. Specifically: pulse oximetry (SpO2), mean arterial pressure (MAP),
blood pressure (BP), temperature, and respiratory rate (RR).
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Table 6: Total number of learned parameters (in thousands).
Dataset LMM LMMA THP SAHP SGHP
2-D Hawkes 17.2 17.2 25.3 4.1 2.7
MIMIC-II 17.8 19.6 189 6.5 4.2
StackOverflow 15.7 17.8 1595 4.8 3.7
Retweet 14.8 17.2 41.7 4.2 2.4
COVID-19 14.9 17.3 23.7 4.2 3.8
Average 16.9 17.8 417.8 4.8 3.1

Figure 7: The standard deviation of the predicted arrival times as a function of the observed history length.

Appendix B. Additional Results

B.1. Covid-19 Emergency Department Predictions

Tables 4 and 5 present additional results for mortality and event type predictions on the COVID-19 dataset,
namely area under the receiving operating characteristic (AUROC) and F1 scores, respectively. Further,
Figure 6 shows the ROC and Precision-Recall Curves for the same task.

B.2. Total Number of Estimated Parameters

The efficiency of the proposed model is highlighted in Section 6. Table 6 further provides the the number
of total estimated parameters across all datasets. As expected, SGHP requires significantly lower number of
parameters across all prediction tasks.

B.3. Uncertainty Around the Predictions

Equipped with a stochastic prediction layer, our model can also provide uncertainty around the arrival
time predictions via sample standard deviations. Figure 7 shows how the uncertainty, quantified as the
average standard deviation of the predicted arrival times, changes as a function of the history length. As
expected, observing longer history allows our model to encode richer history embeddings which results in
lower uncertainty around our predictions.
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Table 7: Hyperparameters used for training across all datasets.
Dataset Epochs Batch Size Hd Learning Rate Sample Size
2-D Hawkes 100 16 16 0.0001 50
MIMIC-II 1000 32 32 0.0001 50
StackOverflow 250 32 16 0.0001 50
Retweet 250 25 16 0.0001 50
COVID-19 100 32 32 0.0001 50

Appendix C. Training Details

We train all the models on an NVIDIA Tesla P100 (16GB). Table 7 also provides details on hyper parameters
such as number of epochs, batch size, size of the input vector, learning rate and number of samples used in
the stochastic layer.

Appendix D. Longitudinal Covariates

We generalize the input vector to include the addition of longitudinal covariates. In order to inject the
information from the covariates, we create a linear transformation that outputs a covariate embedding uenc

i

of dimensionality D and which is consistent with the dimension of the temporal and event type embeddings.
We modify the concatenated embedding vector as follows

xi = [tenci + eenci | uenc
i ], (14)

where uenc
i follows from

uenc
i = Wuzi + bu, (15)

and zi is the vector of covariates for and event at time ti, Wu and bu are weights and the bias of the
linear layer, respectively. This structure can be generalized to all encoder based models, and is used for the
COVID-19 prediction results with patient vitals.
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