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Background. According to the World Health Organization, cardiovascular disease (CVD) is the leading cause of 

death worldwide, claiming around 17.9 million lives annually and representing approximately 30% of all global 
deaths1. Acute myocardial ischemia/infarction (AMI) is an acute manifestation of CVD that occurs when oxygenated 

blood flow to the heart muscle is blocked or severely reduced, and timely diagnosis and treatment are crucial to 

salvaging myocardium and improving patient outcomes. The 12-lead electrocardiogram (ECG) is the initial screening 
tool for patients with suspected AMI, but its diagnostic accuracy remains limited. Deep learning has shown great 

potential in improving the accuracy of AMI detection using 12-lead ECG, but existing models have treated all leads 

equally, potentially limiting performance. Our study proposes a novel deep-learning model that incorporates 

underlying myocardial wall information measured by each of the 12 ECG leads to enhance performance. By 
integrating the anatomically informed 12-lead ECG, our study joins a growing body of research that incorporates 

clinical domain knowledge (i.e., anatomical location) to bolster the performance of machine learning applications in 

healthcare2-4. 
Methods. Our model (see Figure 1) incorporated anatomical information from 12 ECG leads by employing four regional 

learners that learn cross-lead spatial information in inferior leads (II, III, and aVF), septal leads (V1 and V2), anterior 

leads (V3 and V4), and lateral leads (I, aVL, V5, and V6), as well as a global learner that learns from all 12 leads to 

capture the global information. All learners were composed of a 1D convolutional layer that maps the original channel 
dimension to a higher dimensional space (i.e., 20) to learn spatial information at both regional and global levels for 

every sample point. The model then stacked them into a 100-feature space as input for the xResNet model architecture5, 

to learn the combined information and outputs the classification probability of AMI. We compared the performance of 
our proposed model with a baseline model that was trained directly using 12-lead ECG as input for the same xResNet 

architecture. The study adopted a publicly accessible dataset, the PTB-XL, which includes 21,837 recordings of 10s 12-

lead ECG (sampled at 500 Hz), with 5,486 for AMI and 16,351 for non-AMI6, 7. The study followed an 80%-10%-10% 
split for training, validations, and test sets. The model was trained with 50 epochs with a batch size of 128. We selected 

the binary cross entropy as the loss function.The final model was determined by the one with the least validation loss.  

We reported classification performance using the area under the receiver operating curve (AUROC) and conducted a 

performance comparison using DeLong's test.       
Results. Our proposed anatomically informed 12-lead ECG model achieved an AUC of 93.7%, which is significantly 

higher than the baseline model with an AUC of 91.4% (p<0.001). When selecting the optimal cutoff probability based 

on Youden’s index, the proposed model achieved a sensitivity of 85.5%, a specificity of 86.7%, an accuracy of 86.4%, 
a positive predictive value (PPV) of 68.4%, a negative predictive value (NPV) of 94.7% and an F1 score of 76.0%.  

Conclusion. Our deep learning model showed significant improvement in the detection performance of AMI when 

incorporating existing clinical domain knowledge (i.e., anatomical location) in the model design. Our next steps will 
involve validating the generalizability of the model to other datasets, exploring the relationship between information 

learned from different regional learners and locations of occluded coronary arteries, and incorporating other data 

modalities through multimodal learning for further performance improvement.  
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Figure 1. Model architecture for the Anatomically Informed 12-Lead ECG deep learning model  
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