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Abstract

Deriving true clinical utility from models trained on multiple hospitals’ data is a key
challenge in the adoption of Federated Learning (FL) systems in support of clinical collab-
orations. When utility is equated to predictive power, population heterogeneity between
centers becomes a key bottleneck in training performant models. Nevertheless, there are
other aspects to clinical utility that have frequently been overlooked in this context. Among
them, we argue for the importance of understanding how a collaboration may be affecting
the quality of a center’s predictions. Insights into how and when external knowledge is
being useful can lead to strategic decisions by stakeholders, such as better allocation of
local resources or even identifying best practices outside of the current organization. We
take a step towards deriving such utility through FedeRated CLassifier Selection (FRCLS,
pronounced “freckles”): an algorithm that reuses classifiers trained in outside institutions.
It identifies regions of the feature space where the collaborators’ models will outperform
the local center’s classifier, and can provide interpretable rules to describe these regions
of beneficial expertise. We apply FRCLS to a sepsis prediction task in two different hos-
pital systems, demonstrating its benefits in terms of understanding the types of patients
for which the collaboration is useful and reasoning about the strategic decisions that may
stem out of these analyses.

1. Introduction

When training Machine Learning (ML) models for healthcare applications, previous studies
have shown the advantages of using multiple centers’ data. This strategy augments the
sample size available for data-intensive models, increases the availability of rare and new
events, and potentially enhances the generalizability of model predictions (Lee et al., 2012;
Wiens et al., 2014; Sheller et al., 2018; Curth et al., 2019; Li et al., 2019). This collaborative
approach, however, faces several obstacles that can prevent it from delivering true clinical
utility:
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• Limits on data sharing: Hospitals are responsible for protecting their patients’ pri-
vacy. As such, legal constraints, organizational policies, and ethical barriers often impede
centers from sharing patient-level data (Van Panhuis et al., 2014).

• Population heterogeneity: Data in different centers is inherently heterogeneous. They
collect data in different ways, have different laboratory procedures, and have varying care
styles and organizational cultures. Of most interest to us, different hospitals serve differ-
ent populations. As a consequence of this natural population diversity, data from different
centers is not identically distributed. However, sharing intelligence across centers, in spite
of these misalignments, is a worthwhile effort that can bring improvements in quality of
care and reductions in its cost (Lee et al., 2012; Curth et al., 2019). Naive collaborative
models will fail to recognize and leverage this variation.

• Overemphasis on Predictive Power: ML engineering has traditionally focused on
optimizing predictive power, measured through some metric such as empirical accuracy.
Nonetheless, there are other aspects of clinical utility that are often neglected. In the
context of clinical collaborative strategies, we are interested in explaining how the col-
laboration itself is affecting a center’s predictions, e.g., whether a decision is being made
based on knowledge from an external center. Concrete rationale of this type can incen-
tivize further cooperation, identify local bottlenecks and inform local resource allocation,
or even help identify external best practices.

In this work, we introduce Federated CLassifier Selection, or FRCLS (pronounced “freck-
les”), a Federated Learning (FL) classification algorithm that tackles all three obstacles
outlined above. Similarly to other FL algorithms, FRCLS overcomes the data sharing ob-
stacle by training distributed models through the exchange of their associated parameters
instead of the data they are being trained on (Kairouz et al., 2019; Li et al., 2020a; Rieke
et al., 2020). However, unlike other FL algorithms that train a single global model for
all participating collaborators (McMahan et al., 2017; Li et al., 2020b; Karimireddy et al.,
2020), FRCLS is designed to adapt application of models to the data distribution of a par-
ticular hospital. In addition, FRCLS is able to identify groups of patients for which the
collaboration is particularly useful.

FRCLS is driven by the intuition that inter-center population heterogeneity makes each
hospital an expert on different patient subpopulations, just as we illustrate in Figure 1.
It follows that each center could be an expert in a different region of the feature space.
FRCLS leverages this diversity of competence among classifiers and dynamically picks the
model that is best for each incoming instance. Other works on FL for healthcare that
recognize the challenge of heterogeneity of data address it through techniques such as domain
adaptation (Curth et al., 2019; Andreux et al., 2020a) and clustering (Huang et al., 2019).
However, they all suffer from the third obstacle above: clinicians cannot judge the utility
of the collaboration itself beyond the predictive performance of the resulting models.

FRCLS addresses this last obstacle by explicitly recognizing when it is leveraging knowl-
edge from an external center. It can also produce rules that clearly delineate the regions of
the feature space where external centers are more competent than the local center, provid-
ing an interpretable rationale for decisions made by local stakeholders. By optimizing for
both accuracy and interpretability simultaneously, and by targeting a deeper understanding
of the collaborative predictions, we hope to optimize for our actual goal: clinical utility.
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Figure 1: Illustration of inter-center population heterogeneity. Our hypothesis is that a
model trained on the data from Hospital A will be an expert on patients from
Group 3, while a model trained on Hospital B may underperform for that group.
It will thus be beneficial to use model A on Group 3 in Hospital B.

We demonstrate the effectiveness of FRCLS on an early sepsis prediction task (Reyna
et al., 2019), where we train and exchange classifiers between two different hospital systems.
We show how each system yields benefits from selectively using the external classifier along
two axes: in terms of a significant number of predictions flipped from incorrect, when using
the local classifier, to correct; and in terms of understanding for which types of patients
these flips happen.

Generalizable Insights about Machine Learning in the Context of Healthcare

Recent advances in Federated Learning (FL) are a promising step towards identifying the
strengths of collaborations between clinical centers, allowing models to be built while data
remain siloed. Nevertheless, before FL can be deployed successfully in clinical collabora-
tions, we must develop algorithms that (i) are robust to population heterogeneity, and (ii)
allow clinical centers to understand when they are making use of external knowledge, pro-
viding them with utility beyond an increase in predictive power. To address these issues,
we propose FRCLS, an algorithm that selectively exploits population heterogeneity, finds
regions of the feature space where models trained at external centers can outperform a local
model, and describes these regions of expertise through simple rules. Thus, FRCLS char-
acterizes types of patients where it is advantageous to use external knowledge, codified in
the form of an external machine learning model.

2. Related Work

We review relevant work in three key directions: (i) Dataset shifts in healthcare, which
is a crucial motivation for our work, (ii) Federated Learning (FL), to situate our work in
the broader context of this field, and (iii) Dynamic Classification, the underlying technique
behind FRCLS.
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Dataset Shifts in Healthcare. At a high level, dataset shift refers to a scenario in
which a machine learning model is tested on data drawn from a different distribution than
the one it was trained on (Subbaswamy et al., 2021). Usual performance guarantees don’t
apply to this setting, as they refer to how the model will perform on data drawn from the
training distribution. Dataset shift may cause the deterioration of clinical prediction models
when they are validated on an external distribution and when a collaboratively trained
model is applied to individual centers (Lee et al., 2012; Zech et al., 2018; AlBadawy et al.,
2018; McKinney et al., 2020). Different works have tried to prevent this degradation by using
techniques such as domain adaptation (Curth et al., 2019) and transfer learning (McKinney
et al., 2020; Mustafa et al., 2021). FRCLS exploits the model heterogeneity that such a
shift causes through its dynamic classifier approach.

On the clinical side, recent efforts to offset dataset shifts include developing and im-
plementing common data models across collaborating institutions. Nevertheless, these are
only partially successful, as other considerations, such as local workflows and treatment
protocols, are also contributing factors (Matheny et al., 2019).

Federated Learning. Traditional FL algorithms coordinate the training of machine
learning models through a central server, which iteratively broadcasts the current model to
participating collaborators and aggregates the updates it receives in return (Li et al., 2020a;
Kairouz et al., 2019). Different algorithms vary in terms of how they perform the local
updates and the central aggregation (McMahan et al., 2017; Li et al., 2020b; Karimireddy
et al., 2020). Previous work has shown the feasibility of using federated techniques of this
kind on healthcare problems (Sheller et al., 2018; Li et al., 2019; Andreux et al., 2020b,a;
Caldas et al., 2020), others have focused particularly on FL’s fairness challenges (Li et al.,
2020c; Mohri et al., 2019). Algorithmically, FRCLS’s approach is different in one crucial
way: it performs one single exchange between all collaborators instead of several exchanges
with a central server.

Dynamic Classification. Our method is related to the Dynamic Classifier Selection
(DCS) and the Regression-based Informative Projection Recovery (RIPR) frameworks (Cruz
et al., 2018; Fiterau and Dubrawski, 2012), both of which make use of a heterogeneous pool
of classifiers and serve a different model for each test instance. Both frameworks select the
classifier to be served by estimating the competence of each candidate model on the region
of the feature space where the new instance resides. DCS methods estimate the models’
performance on the instance’s k-nearest neighbors, while RIPR derives a local entropy
measure. FRCLS takes a similar approach to the one used by DCS methods.

3. Method

In this section, we first present the proposed algorithm, Federated CLassifier Selection or
FRCLS (pronounced as “freckles”) in Section 3.1, before detailing its dynamic classifier
component in Section 3.2.

3.1. Federated Classifier Selection

At a high level, FRCLS proceeds in three stages: the local training of classifiers, the ex-
change of fully trained classifiers between centers, and the dynamic selection of classifiers
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in each center. We first give a high-level overview of each stage before further detailing the
third one, which is the focus of our contributions.

1. Training of local classifiers: Each clinical center can independently choose its own
type of model, hyperparameter tuning strategy, etc.

2. Exchange of classifiers: In this stage, clinical centers exchange both their fully trained
classifiers and the local imputation/standardization parameters used during training.
We assume an honest-but-curious threat model and thus consider it safe to share this
information among clinical centers. A central authority may also anonymize the exact
source of the external classifiers. In the end, each hospital is left with a local classifier
cL and a pool of candidate external classifiers C = {c1, . . . , cM}.

3. Dynamic selection of candidate classifiers: This stage takes place at each center
independently. The ultimate goal is, for each new incoming instance, to select the most
competent classifier among all candidates. We explain the details on how FRCLS does
this in Section 3.2.

3.2. Dynamic Selection of Candidate Classifiers

We are given a local classifier cL and a set of M external classifiers C = {cm}Mm=1. Our
objective is to determine, for each new instance x, whether to use cL or one of the elements
of C. To make this decision, we set out to quantify the utility of the external classifiers in
C relative to cL. Define

Lc(x, k) =
1

k

∑
j∈nn(x,k)

`(c(xj), yj),

ρm(x, k) =
LcL(x, k)

Lcm(x, k)
,

where nn(x, k) returns indices of the k-nearest neighbors of x, ` is the cross-entropy loss,
and c(x) is the score that classifier c assigns to x.

Notice that Lc(x, k) estimates classifier c’s competence on a given point x by averaging
c’s loss on the point’s k-nearest known neighbors. Because it looks at the classifier’s loss,
Lc is inversely related to c’s competence. Meanwhile, ρm(x, k) takes the ratio of Lc for the
local cL and an external cm. Because of Lc’s inverse relation to competence, a higher value
of ρm translates into a higher competence for the external classifier cm.1

We now construct the greedy external classifier cE which solves

cE(x) = arg max
cm∈C

cm(x)

for each new instance x. The final step is to pick between cL and cE . A naive strategy would
choose cE whenever ρE(x, k) > 1. However, this strategy won’t be necessarily optimal, as
ρE quantifies relative competence in terms of loss, which is just a proxy for actual clinical
utility. Instead, we propose two data-driven strategies that we illustrate in Figure 2.

1. For computational stability, the quantity we use in our experiments is ρ′m(x, k) = log
LcL

(x,k)+ε

Lcm (x,k)+ε
for some

small ε.
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vs.

Calculate 
ϱE(    , k)

IF ϱE(    , k) > ϱ0:
Use cE

ELSE:
Use cL

IF      IN Group     :
Use cE

ELIF       IN Group     :
Use cE

ELSE:
Use cL

Figure 2: Illustration of FRCLS’s strategies to select between the local and the external
classifiers once a new instance arrives: competence threshold and decision list.
By construction, the decision list strategy is interpretable, which adds to its
clinical utility.

3.2.1. Competence Threshold

Our first strategy finds a threshold ρ0 such that cE will be used whenever ρE(x, k) > ρ0. We
optimize this threshold by minimizing the p-value of a statistical test whose null hypothesis
states that cL’s utility is greater than cE ’s, where we measure utility in terms of a classifier’s
correct predictions.

More precisely, we define

F (ρ0) = |{xi : ρE(xi, k) > ρ0, c
∗
L(xi) 6= c∗E(xi), c

∗
E(xi) 6= yi}|,

S(ρ0) = |{xi : ρE(xi, k) > ρ0, c
∗
L(xi) 6= c∗E(xi).c

∗
E(xi) = yi}|

where c∗(x) is the label that classifier c assigns to x. Notice that S is the number of instances
where using cE actually changes the prediction made by cL, and the new prediction is
correct. Meanwhile F is the number of instances that changed predictions to an incorrect
one.

Having these quantities, we perform a one-tailed binomial test to check for the statistical
significance of S(ρ0)

S(ρ0)+F (ρ0)
< 0.5. In our experiments, we use a simple grid search strategy

to look for the threshold ρ0 that lets us reject this null hypothesis with the most confidence.

3.2.2. Decision Lists

Our second strategy uses cE if the instance satisfies a set of interpretable rules, and otherwise
defaults to cL. To build these rules, FRCLS uses a rule learning algorithm to create a
decision list that maximizes a lower bound on the mean of ρE . Then, we iterate over the
list and choose the rule that minimizes the p-value of our binomial test when applied to the
instances selected by all rules so far on the list. This will be the last rule that prescribes the
use of cE . Our approach is agnostic to the implementations of the rule learning algorithm.
The one we use in our experiments is the one proposed by Moore and Schneider (2002).
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Limitations

After we find the threshold or rule that maximizes cE ’s utility relative to cL’s, the opti-
mal p-value of our binomial test may still be higher than a satisfying confidence level. In
this scenario, both of FRCLS strategies would default to the local model for all instances
and there would be no gains in predictive power due to the collaboration. However, the
knowledge that the external models do not outperform the local one for any patient subpop-
ulation is still a valuable insight into the limited utility of the collaboration. Additionally,
our k-nearest neighbors estimator for Lc is known to suffer from the curse of dimensionality.
We also need to tune an extra hyperparameter for it: the number of neighbors or k. We
propose a heuristic to perform this tuning in Appendix B.

4. Results and Discussion

In this section, we first present the details of our experimental setup (Section 4.1), before
presenting and discussing the results of the local classifiers (Section 4.2), and FRCLS’s
competence threshold and decision list strategies (Sections 4.3 and 4.4, respectively).

4.1. Experimental Setup

We demonstrate our method on an early sepsis prediction task. Sepsis is linked with high
mortality, morbidity, and cost of care in hospitalized patients. To mitigate this burden,
early identification of risk for sepsis and timely treatment are recommended (Angus et al.,
2001). It follows that systems for early and accurate identification of sepsis are of crucial
interest for the community (Nemati et al., 2018; Reyna et al., 2019).

Data Source. We use the data shared by Reyna et al. (2019) as part of the 2019
PhysioNet/Computing in Cardiology Challenge. The released data corresponds to ICUs
in two geographically distinct hospital systems with different Electronic Medical Record
systems. In the rest of the paper, we refer to these as hospital system A and hospital system
B, matching the nomenclature used by Reyna et al. (2019). The public data accounts for
40, 336 patients and over 1.5 million instances.

Machine Learning Task. Our machine learning task is to predict sepsis 6 hours
before its onset time, according to the definition used by Reyna et al. (2019). Due to
the nature of this task, the label distribution is skewed: only 1.80% of the given labels
correspond to the positive class. To facilitate the predictive task and to focus our study
on its federated aspects, we randomly undersample the negative labels in order to match
the number of negative and positive labels. We are left with 55.8 thousand instances from
20, 779 patients. Table 5 shows the number of instances per hospital system.

Feature Choices. We use the features provided by the 2019 PhysioNet Challenge.
These consist of a mixture of hourly vital signs, laboratory values, and patient descrip-
tors. Table 6 and Table 7 describe the numerical and categorical features provided, respec-
tively. We also use the standard deviations of the mean arterial pressure and the respiration
rate (Nemati et al., 2018).

Data Splits. We split each hospital system’s data into three disjoint sets. First, a
training set used for training and tuning the local classifier. Second, a validation set used
to either find the optimal ρ0 or to train FRCLS’s decision list. This set is used to measure
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Lc for all candidate classifiers, i.e., the operator nn(x, k) is restricted to returning instances
from this set. Third, we have a test set for estimating FRCLS’s performance. We perform
the split in a 40/30/30 fashion.

Predictive Models. Our local classifiers are logistic regression models with ridge
penalty. We tune the regularization hyperparameter using 5-way cross-validation to opti-
mize for loss. We locally impute missing values, using the mean for numerical features and
the mode for categorical ones. Finally, we locally standardize numerical features.

These models are not state-of-the-art for a sepsis prediction task, but they are sufficient
for evaluating our method, as our purpose is to selectively use cE to successfully change
local predictions and not to achieve the best possible accuracy on the task.

Evaluation Metrics. We are interested in comparing the utility of classifiers cE and
cL on the instances where FRCLS decides to use cE over cL. We measure this relative utility
as we did in Section 3: by looking at the instances (x, y) for whom c∗L(x) 6= c∗E(x). We refer
to these predictions as flipped, and we consider them as successful flips if c∗E(x) = y. If the
number of successful flips represents more than 50% of the total number of flips, then we
consider the method successful.

Our metric requires crisp predictions from the classifiers. As such, we focus on two
constraints that optimize for complementary objectives and allow us to obtain crisp clas-
sifiers: holding the true positive rate at 90% (@90% TPR), and holding the false positive
rate at 10% (@10% FPR). Given our sepsis prediction task, a center would likely prefer
guaranteeing a high recall (@90% TPR), but we show both constraints for the sake of
completeness.

Finally, this metric only measures cE ’s performance on those instances in which cE ’s
predictions differ from cL’s. To quantify cE ’s performance both when it agrees and dis-
agrees with cL, we also measure the accuracy of the crisp classifiers on all instances where
FRCLS uses cE over cL.

4.2. Results of Local Classifiers

We show the performance of our sepsis prediction models trained independently in Hospitals
Systems A and B in Figure 3. We plot the Receiver Operating Characteristic (ROC) curve
for both models when evaluated in the test data of each hospital system. In both cases, cL
either outperforms or matches the performance of cE , a consistent behaviour throughout
the curve. Judging by these results, both hospital systems may have deemed cE ’s utility as
limited. However, in Section 4.3 and Section 4.4, we’ll show that, by comparing the models’
local behaviour, these hospital systems do yield utility from their external models cE , doing
so selectively on a subset of their instances.

4.3. Results of Competence Threshold Strategy

Table 1 presents the results for our competence threshold strategy. For three out of the
four scenarios we consider, we obtained an optimal p-value lower than 0.05 in both our
validation and test sets, a confidence level we consider satisfying for our experiments. These
results speak to FRCLS’s generalization ability. We note that, in the one scenario in which
FRCLS did not generalize (Hospital System A @90% TPR), the validation set p-value was
several orders of magnitude higher than for the other scenarios.
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Figure 3: AUC ROC for the classifiers when tested on each hospital system. Confidence
bands reflect Wilson scores. We plot the false positive rate in logarithmic scale for
better visibility of models’ performance at clinically relevant low error settings.

Table 1: Results for our competence threshold strategy for one run. All results are measured
on the test set unless specified. In bold, p-values higher than 0.05.

Hospital
System

Val
p-value p-value

Instances
handled
by cE

Successful
Flips

(% of flips)
Local

Accuracy
External
Accuracy

A (@90% TPR) 1.69e−3 9.99e−1 1058 26 (32.91%) 63.71% 61.15%

A (@10% FPR) 3.21e−42 1.52e−9 1525 280 (64.22%) 53.64% 61.77%

B (@90% TPR) 7.26e−31 9.04e−11 1243 195 (68.90%) 49.64% 58.25%

B (@10% FPR) 1.51e−7 1.90e−2 2548 128 (57.14%) 57.50% 58.75%

Given our data splits, our test sets consist of over 9.5 and 7.3 thousand instances for
hospital systems A and B, respectively. With this strategy, FRCLS ends up using cE on
15−35% of the data. Out of this data, 5−18% correspond to successful flips. This translates
into the hospital systems reaping real utility out of cE in most cases, as evidenced in the
p-values of our binomial test. Finally, in all cases in which we observe utility in terms of
successful flips, we also observe utility in terms of an increase in accuracy.

4.4. Results of Decision List Strategy

To generate our decision lists, we use an implementation of the computationally efficient
algorithm proposed by Moore and Schneider (2002). We limit each rule to have a maximum
of two features in order to make their interpretation easy, and restrict the minimum support
of each rule to at least 1.5% of the validation sample size in each hospital system, to
safeguard against overfitting. These hyperparameter settings work well in the presented
examples, but they may need to be optimized for other applications.
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Table 2: Results for our decision list strategy. Notice that, when Val p-value is greater than
0.05 (bolded), no instances are handled by cE .

Hospital
System

Val
p-value p-value

Instances
handled
by cE

Successful
Flips

(% of flips)
Local

Accuracy
External
Accuracy

A (@90% TPR) 2.52e−1 - 0 - - -

A (@10% FPR) 1.12e−6 3.07e−5 1925 299 (58.97%) 57.92% 62.65%

B (@90% TPR) 1.35e−3 1.25e−8 700 134 (70.16%) 51.43% 62.43%

B (@10% FPR) 8.04e−2 - 0 - - -

IF PTT > 84.55 AND Phosphate <= 8.42:
Use cE

ELIF BUN > 83.56 AND Calcium <= 9.66:
Use cE

ELIF Hct > 40.31:
Use cE

ELIF Calcium > 9.66:
Use cE

ELIF Hgb > 12.14:
Use cE

ELSE:
Use cL

IF BaseExcess > -0.92:
Use cE

ELIF FiO2 > 0.65:
Use cE

ELSE:
Use cL

Hospital System A Hospital System B

Figure 4: Rules learned by FRCLS’s decision list strategy for our early sepsis prediction
task. Instances satisfying these rules will use cE instead of cL.

Just as in the previous section, we show our results in Table 2. Meanwhile, in Figure 4,
we illustrate the decision lists learned for each of the hospital systems. This time, we
encounter two situations in which the optimal p-value in the validation set is lower than
0.05. In these cases, FRCLS defaults to cL. In the other two situations, Hospital System
A @10% FPR and Hospital System B @90% TPR, FRCLS generalizes well, using cE on
10 − 20% of the test instances, out of which 15 − 19% are successful flips. Compared to
our competence threshold strategy, we observe a degradation in our p-values, which are
now tens of orders of magnitude greater. This translates into lower ratios of successful flips.
This is an expected trade-off, as we can now easily interpret FRCLS’s decisions. Conversely,
with respect to the previous strategy, the difference in p-values between the validation and
test sets has decreased by several orders of magnitude. This is also expected, as the use of
a decision list with short rules prevents overfitting.

Finally, we look at the relation between strategies in terms of the instances FRCLS se-
lects to use cE . We argue that our competence threshold strategy selects two types of
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Table 3: Percentage of instances selected by our competence threshold strategy that are
successfully explained by our decision list strategy.

Hospital System Set
% Explained

by Rules

A (@10% FPR)
Val 40.54%
Test 38.75%

B (@90% TPR)
Val 21.23%
Test 20.68%

Table 4: Instances whose predictions get flipped with the use of cE . We present one instance
per hospital system. The complete list of features for both instances is shown in
Table 8.

Variable Patient A

Age 69

Gender Male

BUN 13

Calcium 8.6

Hct 38.5

Hgb 13.1

PTT 28.2

Phosphate 2.5

True Label 1

Variable Patient B

Age 54

Gender Male

Base Excess -3.2

FiO2 1

True Label 0

instances: some that can be explained with the type of rules we desire, with at most two
attributes, and some that are not. Our decision list strategy picks out the former group.
In Table 3, we show that these easy-to-explain instances correspond to 20 − 40% of the
instances selected through competence thresholding.

4.4.1. Using FRCLS’s rules

We turn our attention into demonstrating how clinical centers can use the rules learned
by FRCLS’s decision learning strategy, and into showing possible ways to derive strategic
utility from them.

In Table 4 we show two instances corresponding to two different patients, one from each
hospital system. We refer to them as Patient A and Patient B. These are instances for
whom the rules of their respective hospital system apply and for whom the use of cE proves
beneficial when holding the appropriate constraints, i.e., @10% FPR for hospital system
A and @90% TPR for hospital system B, as shown in Table 2. In the case of Patient A,
FRCLS uses cE because his hemoglobin is greater than the found threshold. For patient B,
it’s because his fraction of inspired oxygen is higher than 0.65.
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We propose a simple argument to explain why cE does better than cL for these two
cases: the external hospital center sees relatively more instances that satisfy the relevant
rules, i.e., Hgb > 12.14 for hospital system A, and FiO2 > 0.65 for hospital system B.
To check for this, we construct a one-tailed z-test to compare the proportion of instances
that satisfy the rule in the local and external hospital systems. We call these pL and pE ,
respectively. Our null hypothesis states that pL − pE > 0. For the two rules in question we
obtain p-values of 5.60e−4 and 4.38e−10, meaning we have enough evidence to conclude
that pE > pL in these cases2.

We recognize that the utility of cE for a group of patients may be due to different factors,
with sample size being just one of many. However, to derive strategic utility, clinical centers
do have to explore why others are doing better. If it is just an issue of differing subpopulation
sizes, then strengthening institutional cooperation would make obvious sense. However, it
could also be due to issues in data capturing, or even differences in the consistency and
quality of the clinical practices themselves. Different conclusions could lead to different
decisions by stakeholders.

5. Conclusions

We proposed an approach to derive clinical utility from Federated Learning (FL) systems
that goes beyond an increase in predictive power. Compared to previous works in FL for
healthcare applications, we argued for a deeper understanding of potential benefits of the
clinical collaborations supported by these systems, particularly of when and why exter-
nal knowledge was affecting local predictions, as this understanding can lead to strategic
decisions by stakeholders.

We used a dynamic classification framework to contextually leverage models trained at
different clinical institutions, and produced simple rules to clearly outline regions of the
feature space where one model outperformed the others. We tested our proposed approach
on a benchmark sepsis prediction task in two hospital systems, showing that it was capable
of providing both a boost in predictive power and interpretable insights into the types
of patients most benefited by the collaboration. Such insights can be used to motivate
follow up investigations into specifics of clinical practice that may lead to such differences
in model performance. These investigations could help identify the most effective practices
for industry-wide proliferation, as well as create awareness of potential inefficiencies of
organizational culture or processes that may be addressable at local institutions.

Additional research can improve our work. First, designing a feedback mechanism be-
tween collaborators could result in further gains: specializing external models to local needs.
This mechanism could be inspired by popular boosting techniques. A more immediate next
step is to hybridize both of FRCLS’s current strategies, using a competence threshold
on those instances not picked out by learned rules. Finally, further exploration into why
external models sometimes do better is crucial for making strategic decisions in clinical
institutions. An ambitious step in this direction would be the development of frameworks
to compare the consistency and quality of practices through model outputs.

2. We note that this z-test shares more information across hospital systems than mere model parameters.
However, no raw data is being shared.
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Appendix A. Additional Tables

We present additional tables that complement the main body of our paper. Table 5 shows
the dataset size for each hospital system. Tables 6 and 7 describe the features in our data.
Finally, Table 8 provides a complete description of the instances we use to exemplify how
to use FRCLS’s rules.

Table 5: Number of instances in each hospital system.
Hospital System Number of Instances

A 31, 253

B 24, 579

Appendix B. Tuning the Number of Neighbors

We expand on how to tune the number of neighbors k used to estimate Lc(x, k). Through
k we control how useful our estimates are: too high and we loose the local information on
which FRCLS relies, too low and we overfit to noise. To avoid these scenarios, we propose
a heuristic to tune k on our validation set.

For this tuning, we use `c(x, y) = `c(c(x), y), where ` is the cross-entropy loss, as a
surrogate for the utility of classifier c. This way, it is easy to differentiate two groups of
instances: those for which `cE < `cL , and those for which `cE ≥ `cL . If k is chosen correctly,
then we expect the distribution of ρE in each one of these groups to not change drastically
between validation and test sets. Our heuristic aims to minimize this change but instead
uses two disjoint splits of the validation set.

To measure changes in distribution, we use the Rényi divergence (Póczos and Schnei-
der, 2011). For each group of instances defined above, we explore a grid of possible val-
ues for k and plot the resulting divergences. Finally, we find the knee of each curve and
choose the highest k between them. In our experiments we explore the range of values
k = {2, 7, 15, 50, 100, 150, 500, 1000} and end up using k = 100.
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Table 6: Numerical features in our data. We show the median (Q1/Q3) for each one of our
hospital systems.

Variable System A System B

AST 43.0 (24.0/91.0) 33.0 (21.0/67.0)

Age 65.1 (52.4/75.8) 62.0 (50.0/72.0)

Alkalinephos 78.0 (56.0/116.0) 70.0 (53.0/99.0)

BUN 19.0 (13.0/32.0) 19.0 (12.0/32.0)

Base Excess 0.0 (-2.0/3.0) -3.5 (-5.7/-0.8)

Bilirubin Total 0.7 (0.4/1.5) 0.9 (0.6/1.5)

Calcium 8.3 (7.8/8.7) 8.3 (7.5/8.8)

Chloride 106.0 (102.0/109.0) 106.0 (103.0/110.0)

Creatinine 0.9 (0.7/1.4) 1.0 (0.8/1.7)

DBP 59.0 (52.0/68.0) 64.0 (55.5/74.0)

FiO2 0.5 (0.4/0.5) 0.4 (0.4/0.6)

Glucose 125.0 (105.0/152.0) 123.0 (104.0/150.0)

HCO3 24.0 (22.0/27.0) 22.1 (20.1/24.7)

HR 87.0 (75.0/100.0) 86.0 (74.0/99.0)

Hct 30.5 (27.7/34.0) 30.8 (26.5/35.8)

Hgb 10.4 (9.3/11.6) 10.0 (8.6/11.7)

Lactate 1.4 (1.1/2.1) 1.6 (1.2/2.3)

MAP 77.0 (68.0/87.0) 83.0 (73.0/96.0)

Magnesium 2.0 (1.8/2.2) 2.0 (1.9/2.3)

O2Sat 98.0 (96.0/99.0) 98.0 (95.0/99.5)

PTT 31.0 (27.0/38.2) 31.6 (28.2/38.1)

PaCO2 40.0 (36.0/45.0) 38.0 (34.0/44.0)

Phosphate 3.3 (2.7/4.1) 3.4 (2.7/4.2)

Platelets 193.0 (137.0/267.0) 180.0 (123.0/248.0)

Potassium 4.0 (3.7/4.4) 4.0 (3.7/4.4)

Resp 19.0 (16.0/23.0) 18.0 (16.0/22.0)

RR 0.7 (0.6/0.8) 0.7 (0.6/0.8)

SBP 118.0 (104.0/135.0) 122.0 (106.0/141.5)

SaO2 97.0 (93.0/98.0) 97.5 (95.7/98.8)

Temp 37.1 (36.6/37.6) 36.8 (36.4/37.5)

WBC 11.3 (8.3/15.0) 10.3 (7.5/14.1)

pH 7.4 (7.4/7.4) 7.4 (7.3/7.5)
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Table 7: Categorical features in our data. We show the percentage of the specified value in
each one of our hospital systems. Unit1 is an administrative reference to a medical
ICU (as opposed to a surgical one). A Gender of 0 refers to female.

Variable (Value) System A System B

Gender (0) 40.48% 44.47%

Gender (1) 59.52% 55.53%

Unit1 (0) 18.85% 36.88%

Unit1 (1) 29.29% 34.42%
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Table 8: Complete list of features for instances whose predictions get flipped with the use
of cE . We present one instance per hospital system.

Variable Patient A Patient B

Age 69 54

Gender 1 1

AST - 23

Alkalinephos - 58

BUN 13 13

Base Excess - -3.2

Bilirubin total - 2.1

Calcium 8.6 4.39

Chloride 110 113

Creatinine 1 0.8

DBP 43 60

FiO2 - 1

Glucose 140 116

HCO3 27 22.4

HR 51 80

Hct 38.5 31.7

Hgb 13.1 10.9

Lactate - 1.25

MAP 63 75

Magnesium 2.4 1.9

O2Sat 97 98

PTT 28.2 38.4

PaCO2 - 42

Phosphate 2.5 2.1

Platelets 107 140

Potassium 4 4.4

Resp 16 18

RR 1.17647 0.75

SBP 123 126

SaO2 - 95.9

Temp 36.06 37.4

Unit1 - 1

WBC 25.2 14.9

pH - 7.34

True Label 1 0
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