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Abstract

Current approaches to developing a generalized automated sleep staging method rely on
constructing a large labeled training and test corpora by leveraging electroencephalograms
(EEGs) from different individuals. However, data in the training set may exhibit changes
in the EEG pattern that are very different from the data in the test set due to inherent
inter-subject variability, heterogeneity of acquisition hardware, different montage choices
and different recording environments. Training an algorithm on such data without account-
ing for this diversity can lead to underperformance. In order to solve this issue, different
methods are investigated for learning an invariant representation across all individuals
in datasets. However, all parts of the corpora are not equally transferable. Therefore,
forcefully aligning the nontransferable data may lead to a negative impact on the overall
performance. Inspired by how clinicians manually label sleep stages, this paper proposes
a method based on adversarial training along with attention mechanisms to extract trans-
ferable information across individuals from different datasets and pay attention to more
important or relevant channels and transferable parts of data, simultaneously. Using two
large public EEG databases - 994 patient EEGs (6,561 hours of data) from the Phys-
ionet 2018 Challenge (P18C) database and 5,793 patients (42,560 hours) EEGs from Sleep
Heart Health Study (SHHS) - we demonstrate that adversarially learning a network with
attention mechanism, significantly boosts performance compared to state-of-the-art deep
learning approaches in the cross-dataset scenario. By considering the SHHS as the training
set, the proposed method improves, on average, precision from 0.72 to 0.84, sensitivity from
0.74 to 0.85, and Cohen’s Kappa coefficient from 0.64 to 0.80 for the P18C database.

1. Introduction

A third of the US population experiences less than the recommended amount of sleep, which
is linked to many chronic diseases and conditions, such as type 2 diabetes, heart disease,
obesity, and depression (con (2015)). As sleep pathologies are increasingly recognized as
crucial factors in many illnesses, both as effects and causes, and the improved availability of
low-cost sleep monitoring devices continues to accelerate the field, the volume of data con-
tinues to expand. The need for automated sleep staging and diagnostics is, therefore, more
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acute, particularly in low resource regions of the world. The ground truth for sleep staging
remains the multi-lead electroencephalogram (EEG) and the standard rules for sleep stag-
ing are still focused on 30-sec windows of data (or ’epochs’) and manual labeling by a sleep
expert into five stages: Wake (W), Rapid Eye Movement (REM), Non-REM 1 (N1), Non-
REM 2 (N2) and Non-REM 3 (N3) (Berry et al. (2012b)). In addition to the time and cost
involved in manual sleep staging, the significant inter-expert variability remains an issue
(Younes and Hanly (2016)). However, the lack of a sizeable public database with heteroge-
neous populations has limited the development of verifiable algorithms that generalize well
across the population. Due to the characteristics and complexities of EEG signals, accurate
interpretation of them by human experts requires several years of training. Therefore, de-
veloping an accurate classifier with high generalizability on other datasets is a challenging
task in this area. Due to the non-stationary nature of the EEG signal (Kaplan et al. (2005)),
the changes in statistical characteristics of the signal with time, a classifier that is trained
on a temporally-limited amount of data from an individual may poorly generalize on EEG
data recorded at a different time on the same subject. Another issue with the low gener-
alizability issue in EEG data is related to high inherent inter-subject variability in how an
EEG manifests, limiting the usefulness of EEG applications. This phenomenon arises due to
physiological differences (e.g., skull shape) between individuals, and neural activity does not
propagate similarly in different subjects. In particular, cortical folding, tissue conductivity,
and brain tissue shapes are different across people (Gayraud et al. (2017)). Moreover, elec-
trode sensor montages (the points at which the electrodes are attached, and the reference
points) may differ, and different manufacturers’ acquisition hardware may filter the EEG
differently. Finally, when electrodes are applied, small differences in the locations on the
skull may exist, reflecting the EEG technicians’ variety of training or even attentiveness on
a given day. All these factors lead to significant variabilities in EEG signals.

In this paper, a multi-adversarial neural network with an attention mechanism is pro-
posed to tackle these challenges to develop a generalized model for automated EEG sleep
staging.

Technical Significance: The proposed method is the first work to combine multi-
adversarial networks with attention mechanisms for sleep staging with two large datasets.
The proposed method can operate in an unsupervised manner to highlight the critical
channels contributing to the class estimate and pay attention to the more transferable part of
EEG patterns across subjects, contributing more to the classification task. Using two large
EEG databases, 994 patient EEGs from the PhysioNet 2018 Challenge database (=~ 6,561
hours of data) and 5,793 patients (=~ 42,560 hours) EEGs from Sleep Heart Health Study
(SHHS), we demonstrate that adversarially learning a network with an attention mechanism
significantly boosts performance compared to state-of-the-art deep learning approaches in
the cross-dataset scenario. The proposed method improves, on average, precision from 0.72
to 0.84, sensitivity from 0.74 to 0.85, and a Cohen’s Kappa coeflicient from 0.64 to 0.80 for
the PhysioNet 2018 Challenge database.

Clinical Relevance: Automated sleep staging from the EEG has been previously pro-
posed to incorporate a particular carefully engineered feature extraction part and calibrating
the data for each subject or dataset. These methods are time-consuming and costly and do
not generalize well to other datasets or even subjects. In general, previous studies have an-
alyzed data from fewer than 100 individuals, and most of them are on homogeneous and/or
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non-public datasets. Disregarding heterogeneity between individuals and insufficient sam-
ple size leads to essential limitations of clinical usage in real-life problems. Therefore, the
proposed method attempts to solve this problem by training a network on a large dataset
and testing it on another large dataset by learning transferable features, only paying atten-
tion to the essential part of data. The proposed method finds the important channels in
the dataset, which can provide explanatory information for the clinician.

2. Related Work

As mentioned before, to build a data set large enough to make health-AI models work,
studies often combine data from multiple hospitals. Therefore, the condition or device used
to capture the data can vary from hospital to hospital and even department to department.
Electrode mismatching, inherent inter-subject variability and the non-stationary nature of
EEG signals, lead to different joint distribution, P(X,Y") between different recording, where
X and Y are feature and label space, respectively. Moreover, the generalizability of a model
that is trained on a dataset is low when it is going to be tested on another dataset acquired
in different environments with different acquisition hardware. Class imbalances between
hospitals can then be associated with hardware differences (such as filter cut-offs). While
this can be mitigated through careful inspection of the data, electrode placement differences,
and patient physiological differences are harder to identify and mitigate. Therefore, the
transferability of the trained model for an application on unseen subjects is degraded. The
reason behind this problem is that the primary assumption in machine learning techniques
is that training and test data should be drawn from the same distribution, an assumption
that does not necessarily hold in large biomedical datasets. In other words, data from two
hospitals that are recorded with different devices and set-ups, but for the same task, can
not necessarily be leveraged directly in a machine learning approach. The main question
raised is that of how to boost performance in the real-life application of EEG through
the development of a generalized model across a large population. This issue could be
interpreted as how one can diminish spatial and temporal shifts across individuals from
different hospitals or recording environments to handle these different variabilities.

As noted, the spatial shift in data can be caused by the variation of sensors’ location
on the brain in different datasets or mismatching of electrodes in one dataset. This issue
can be partly solved by finding an invariant representation across data-sets (Biswal et al.
(2018)). In the literature, it has been shown that Symmetric Positive Definite (SPD)
matrices provide a strong ability to representations the brain signals (Congedo et al. (2017);
Barachant et al. (2010)). The covariance matrix is a typical example of SPD matrices, which
has been employed in several studies (Saifutdinova et al. (2019); Rodrigues et al. (2019);
Li et al. (2012)). These studies showed that using second-order statistics of multi-channel
signals reduce inter-subject and intra-subject variabilities between EEG signals. The spatial
covariance matrix can well separate useful information about brain functional connectivity
structure (Barachant et al. (2010)) and create a feature space that is comparable across
subjects. Moreover, it has been shown that SPD matrices have excellent robustness to
the considerable variability of real-world environmental conditions such as instrument noise
(Congedo et al. (2017)).
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Other studies (Li et al. (2019); Ma et al. (2019); Tang and Zhang (2020)) tackled this
challenge using domain adaptation techniques to increase generalization of a model that is
trained on EEG data and tested on unseen subjects in Brain-Computer Interface (BCI),
Motor Imagery (MI), and emotion recognition tasks. In the literature, it has been shown
that domain adaption, which can be considered a particular case of transfer learning, solves
the dataset bias of domain shifts, which is common in biomedical applications. The key
technique of domain adaption is to diminish the discrepancy between these two distributions
using the Maximum Mean Discrepancy (MMD) metric (Long et al. (2015)). Previous stud-
ies have employed domain adaptation in biomedical time-series data, bridging the training
and test datasets from different individuals by learning subject-invariant representations
or estimating instance importance using labeled training samples and unlabeled test sam-
ples (Ma et al. (2019); Li et al. (2019); Jayaram et al. (2016)). Shin et al (Shin and Oh
(2012)) and Lee et al (Lee and Choi (2009)) used a group EEG analysis using non-negative
matrix factorization (NMF) to seek common features for handling intra- and inter-subject
variations.

Other methods to increase the generalization ability of a model involve transfer learning
- finding subsets of past subjects to initialize a classifier for training on a new subject
(Zanini et al. (2017)). Bolagh et al. (Bolagh et al. (2016, 2017)) proposed subject-selection
and subject clustering to select relevant individuals based on the similarity between the
EEG pattern of different individuals. Raza et al. (Raza and Samothrakis (2019)) proposed
bagging methods to handle mismatching between training and test distributions. Chai
et al. (Chai et al. (2017)) proposed an adaptive subspace feature matching (ASFM) to
match both the marginal and conditional distributions between EEG data from different
sessions/subjects. All of these studies tried to develop a method for reducing inter-subject
variability by removing the irrelevant subjects in the training set and enabling efficient
knowledge transfer from previous subjects to a new unseen patient.

Recently, multiple authors have focused on developing an automated sleep scoring based
on applying deep learning (DL) methods (Biswal et al. (2018); Malafeev et al. (2018); Tagluk
et al. (2010); Perslev et al. (2019)). Due to the nature of EEGs, which consist of spatial
and temporal information, most convolutional and recurrent processing methodologies are
suitable for EEG processing. Biswal et al. Biswal et al. (2018) proposed to use a com-
bination of deep recurrent and convolutional neural networks to classify sleep stages as
well as sleep abnormalities events. Spectrograms from EEG channels were fed to the CNN
module as input, and then the CNN output was fed into a bidirectional recurrent neural
network. Zhang et al. (Zhang et al. (2019)) also used the same approach for assessing the
generalization capability of their model by testing their model on two different datasets.
These methods have gained attention these days since they simplify processing pipelines
through end-to-end learning, removing the need for domain-specific knowledge for feature
engineering. DL methods are clearly appealing, but they present some dangers and ignore
the nature of the EEG, and how it is acquired has limited the impact of DL in this domain.
Although DL architectures have been very successful in processing complex data such as
images, text, and audio signals (Liu et al. (2017); Hershey et al. (2017)), the generalization
and interpretation of a DL method across different patients are still the main challenges for
using DL in most clinical applications. DL architectures are hard to “trust” due to their
complexity and non-linearity, further reducing their real-life application in a clinical setting.
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Recently, the use of generative adversarial networks (GANs) (Goodfellow et al. (2014))
to handle temporal and spatial shifts has received more attention (Tzeng et al. (2017);
Sankaranarayanan et al. (2018); Liu et al. (2019)). In fact, similar to GANs, a two-player
minimax game is constructed, in which the feature extractor is trying to confuse the domain
discriminator via adversarial training (Ganin et al. (2016)). These networks try to align
the representations extracted from all EEG channels across all subjects. It is evident that
some parts of the brain are more involved in a given task (or are more active during a
given state); thus all channels are not equally transferable. Moreover, some parts of the
EEG pattern are significantly dissimilar across subjects. Those patterns might be related to
the patient’s specific health history, which could affect EEG patterns. Therefore, forcefully
aligned the irrelevant channels, and EEG patterns may have a large impact on overall
performance. An attention mechanism (Vaswani et al. (2017)) is an effective method to
focus on essential regions of data, with numerous successes in deep learning tasks such as
classification, segmentation, and detection.

In this work, we use the Sleep Heart Health Study (SHHS) database (a private database
available on request from the study investigators) to develop an attention mechanism to
highlight relevant channels and transferable part of EEG pattern across datasets. The at-
tention mechanisms explore the parts of data that are more similar across different subjects
and contribute more to the classification task. More specifically, a multi-adversarial neural
network with an attention mechanism is proposed to tackle the challenges detailed above in
creating a generalized model for EEG processing. Finally, the algorithm’s performance is
assessed on the largest open-access EEG database — the Physionet 2018 Challenge (P18C)
database (Ghassemi et al. (2018); Goldberger et al. (2000)). All data used in the study are
de-identified, and therefore an ethics/institutional review board waiver was provided for
this research.

3. Method

In this paper, we focus on the cross-dataset scenario. Two datasets from different hospitals,
with different individuals, acquisition hardware, and environments, are leveraged to develop
a generalized sleep staging algorithm. The goal is to develop a network on a training dataset
(labeled domain Dy, ), which generalizes well on a test dataset (unlabeled domain Dy, ), where
the distributions of training and test sets are different (P (x4-) 7# Pre(X¢te)). Note that due
to the variations mentioned earlier in biomedical signals, specifically in EEGs, training and
test sets follow different probability distributions. The key technical challenge is raised
based on the discrepancy between these two distributions.

In the following, we describe the proposed method based on a multi-adversarial neural
network with an attention mechanism for the cross-dataset sleep staging task. At first,
a high-level overview of the adversarial domain adaptation method, which is proposed in
(Ganin et al. (2016)), is given, and then the proposed method for automatically classify
sleep stages with attention mechanisms is presented.

3.1. Adversarial Learning for Domain Adaptation

An intuitive idea for developing a network with high generalizability is to minimize the
distance between two distributions. Ganin et al. (Ganin et al. (2016)) developed a method
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to learn a robust representation across two domains and used an approach similar to GAN
(Goodfellow et al. (2014)) for the domain adaptation problem, where adaptation behavior
is achieved via adversarial training. To match the distribution of training and test set, a
domain discriminator connected to the feature extractor via a gradient reversal layer that
multiplies the gradient by a certain negative constant during the backpropagation-based
training (Ganin et al. (2016)).

The domain adversarial network has three components; a feature extractor (G¢(-,6y)),
a label classifier (Gy(-,0y)), and a domain discriminator (G4(-,64)). The feature extractor
is a neural network that learns an invariant representation across training and test sets
by finding a robust transformation. The label classifier is a neural network trained on the
training set (labeled domain Dy,). Finally, the domain discriminator is a neural network
that predicts whether the feature is coming from the training or test set. Here a two-
player minimax game is constructed, in which the feature extractor is trying to confuse the
domain discriminator via adversarial training. The key idea of domain-adversarial training
is to use a Gradient Reversal Layer (GRL), placed between feature extractor and domain
discriminator. The GRL acts like an identity function during forwarding propagation and
multiplies the gradient by a certain negative constant during the backpropagation, leading
to the opposite of gradient descent. Figure (1) shows the framework of the adversarial
domain adaption model proposed in (Ganin et al. (2016)).

Forwardprop Backprop (and produced derivatives) % @

Figure 1: Adversarial Domain Adaption (Ganin et al. (2016)): The domain adversarial
network has three components; a feature extractor (Gy(-,0y)), a label classifier (Gy(-,6,)),
and a domain discriminator (G4(+,604)). This network consists of two losses, the classifica-
tion loss which is minimized on training features, and the domain confusion loss which is
minimized for all features from the training and test sets (while maximizing the domain
confusion loss for the feature extraction). The network contains a gradient reversal layer to
match the feature distributions from the training and test sets.
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The optimization framework of the domain adversarial network proposed in (Ganin et al.
(2016)) can be written as follows:

C(05,0y,00) = — D Ly Gfxz)),yz')—é Y. La(Ga(Gy(xi),di) (1)

Mir 2;€D¢r X;€DtrUD¢e

where n = ny + nge, ng and nge are number of sample in training and test sets, respec-
tively. A is a hyper-parameter that trades-off the domain discriminator loss Ly with the
classification loss L, corresponding to the training classifier G.

3.2. Attentive Adversarial Network

As mentioned earlier, this type of domain adversarial network, which proposed in (Ganin
et al. (2016)), tries to align the representations extracted from all EEG channels across
subjects. Since it is obvious that some parts of the brain are more involved in a given
task, all channels are not equally transferable, which is called local attention. Moreover,
some parts of the EEG pattern are significantly dissimilar across subjects due to subjective
variations in the population, which is called global attention. Inspired by how clinicians
manually label sleep stages, two attention mechanisms, local and global attention, along
with adversarial training is used to extract transferable information across individuals from
different datasets and pay attention to more important or relevant channels and transferable
parts of data, simultaneously.

To define the local attention mechanism that matches the training and test sets over
the important electrodes, and highlight the important channels in a given task, we split
the discriminator Gy in Eq (1) into K channel-wise discriminators G¢; k = 1,2,..., K.
Therefore, applying this to all K discriminators G¢ (shown in Figure (2) in blue), k =
1,2,..., K yields:

Lep =7 Z Y. LalGE(th), di) (2)

k 1 x;ED¢rUD¢e

where ff = (G];c(xz)) is the feature representation in channel k, d; is the domain label of
point x;, Lg is the cross-entropy loss. The output of each channel-wise discriminator G,
defined as:

df = Gi(f) 3)

where cff is the probability of the channel £ in windows ¢ belonging to the training set. When
this probability approaches 1, the k" channel belongs to the training set. Conversely, as
the probability approaches 0, the k*" channel belongs to the test set.

The goal of the local attention mechanism is to increase the weighting for those channels
that are transferable across training and test set. Thus, a larger local attention value should
be generated over transferable channels across the population. The entropy function is an
uncertainty measure, defined as H(p) = —3_;p;log(p;j), and creates the transferability
criterion. The local weight for each channel is then given by

wh =1 H(GY(ED) = 1-H(d). 4)



Dataset 1

Dataset 2

ATTENTIVE ADVERSARIAL NETWORK FOR LARGE-SCALE SLEEP STAGING

Nttt AN Spectrogram SpectNet

!
3
!
3
)

[ S OP Y NPy S S ¥ P

4 {

G
&, é:

iEc h§=(1+w,-")-f{f<£ R
Wl

H(d) .

<

a

Z4

Figure 2: Framework of proposed method: After extracting the spectrograms of all EEG
channels, they are fed to the feature extractor, 3-layer convolutional layers, which is called
SpectNet here. A multi-adversarial network (blue) is developed for highlighting important
channels across datasets attention, and a adversarial network (orange) is used to boost the
certainty of output for transferable windows in the feature space across the population.
Reproduced from (Nasiri (2020)) “CC by 4.0”.

In order to mitigate the detrimental effect on the network from the selection of incorrect
attention values, a residual connection is added in the framework to provide robust opti-
mization. The final channel feature representation h; generated from the attended channel

features is then expressed as:
K

by =) (1+wf)-ff (5)
k=1

Using the local attention mechanism helps the network to focus on the transferable and
important channels based on a given task. Due to varying quality of electrode contact
impedance, varying skull shapes, different hardware acquisition systems, or other variations
across the population and datasets, the domain discriminator may not be able to find any
channels to align. However, some parts of the data might still be transferable by applying an
appropriate projection into a new space. Therefore, it is necessary to add a global attention
mechanism to the extracted feature, h;, before the classifier G, can assist in the transfer

of information. The global discriminator is trained with the following objective function:

Ly = e > La(Ga(hi,dy)) (6)

n
X; €D UD4e

Channel-specific

Feature
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where d; is the label of feature x; coming from the training or test set and Ly is the cross-
entropy loss of the global domain discriminator Gy.

Finally, the minimum entropy regularization is utilized to refine the classifier adaptation.
The entropy minimization principle encourages the low-density separation between classes
by minimizing the entropy of class-conditional distributions on the test set, which is useful
for refining the classifier adaptation (Wang et al. (2019)). Minimizing entropy increases the
confidence of the classifier predictions. However, not all windows (features extracted from
30-sec epochs of EEG) in the training set are transferable. For example, windows that are
significantly dissimilar in the feature space across the whole population from training and
test sets are much less likely to carry useful information. Therefore, forcing minimizing the
entropy of these windows hurts the overall performance. Increasing the confidence of these
windows in the classifier predictions will confuse the classifier, which is harmful. Therefore,
to generate an attention value for each window’s entropy loss, the output of the global
discriminator d; = G4(h;) is used, by aiming to enhance the certainty of those windows
that are more similar across training and test sets. The global attention value for each
window is defined as: R

G=1+H(d) (7)
where the larger global attentions correspond to transferable windows.

Thus, the attentive entropy with the global attention value is defined as follows:

Lo=—1 S SOt H@) piy - log(piy) ®)

X;EDrUD¢e j=1

where ¢ is the number of classes, and p;; is the probability of predicting that point x;
is in class j. By minimizing the attentive entropy penalty, the predictions of transferable
windows will become certain, and thus improve the classifier’s performance.

Using the local and global attention mechanisms along with adversarial learning al-
leviates negative impacts from forcefully aligning the nontransferable part of data, thus
enhances the generalizability of the network. The local attention module focuses on impor-
tant channels in a given task, while the global attention module focuses on more transferable
parts of signals across the population. Like other networks, a appropriate classification loss
function is used to lead the classifier to generate correct predictions. Since the labeled data
is just available in the training set, classification loss is evaluated on the training set as
follows:

L= 3 LGy (9)

ntT Xi EDt7'

where L, is the cross-entropy loss function, and G, is the training classifier.
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Therefore, the end-to-end optimization framework can be express as follows:

C(nygyyedaggykK:l) o Z L

T Xq EDM‘

+1 ¥ fja + H(d))

X;€DtrUD¢e j=1

>

X; €DtrUDx¢e

Gy(Gr(xi), i)

“Pi,j - log(pij)

La(Gi((Gy(x2)))

(10)

L4(Ga(hy, d;))

ZZ

k 1 x;ED¢rUD¢e

3>

Where \g, and «y, chosen via grid search, are hyper-parameter that trade-off between domain
discriminator and attentive entropy loss, respectively. The network parameters can be
learned end-to-end by a minimax optimization procedure as follows:

(éf’ éy) = argmin C(gﬁ an 04, 9§|sz1)
ef’ey
,05) = argmax C(6y,0,,04, 055 )

edyeév"'veé(

(éd,éfi,'--

4. Experimental Set-Up
4.1. Data

Sleep Heart Health Study: The SHHS database consists of two rounds of polysomno-
graphic recordings (SHHS-1 and SHHS-2) sampled at 125 Hz in a sleep center environ-
ment. Following (Duggal et al. (2020)), we use only the first round (SHHS-1) containing
polysomnographic records from participants included 52.9% women and 47.1% men, over
two channels (C4-A1 and C3-A2). Recordings were manually classified into one of six classes
(W, REM, N1, N2, N3, and N4). As suggested in (Berry et al. (2012a)), we merge N3 and
N4 stages into a single N3 stage. Table 1 shows number of sleep stages per class.

Physionet 2018 Challenge: The P18C database includes PSG data from 1,985 sub-
jects included 65% male and 35% women, which were monitored at the MGH sleep labora-
tory for the diagnosis of sleep disorders. The data were partitioned two-part: public dataset
(n = 994) and hidden dataset (n = 989). The sleep stage labels for 994 of the recordings
were made available for the public dataset, where includes Wake, REM N1, N2, and N3
stages. It includes multiple physiological signals that are all sampled at 200 Hz and were
manually scored by certified sleep technicians at MGH sleep laboratory according to the
AASM guidelines into 30 second ‘epochs’. In this work, we use the EEG channels, which
include 'F3-M2’, 'F4-M1’, ’C3-M2’, ’C4-M1’, ’O1-M2’, and ’O2-M1’ channels.

Table 1: Number of subjects and samples per class for each dataset

Dataset # Subjects | # Wake # N1 # N2 # N3 | # REM
SHHS 5,792 1,690,997 | 217,535 | 2,397,062 | 739,230 | 817,330
P18C 2018 994 145,558 | 135,409 | 372,257 | 101,678 | 113,872

10
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Fig (3) illustrates the electrode position on the scalp (looking from top down, with the
nose at the top of the diagram). Note that the green electrodes (C3 and C4) are common
to both databases and were used in this study.

GO0 O O OO

Figure 3: 10-20 EEG Placement: Red electrodes were used in the P18C database and blue
electrodes were used in the SHHS database. Green electrodes (C3 and C4) are common to
both databases. Reproduced from (Nasiri (2020)) “CC by 4.0”.

4.2. Preprocessing

Before presenting the signal to the network, preprocessing is performed to reduce the nega-
tive effects of signal artifacts. Two filters were applied to the EEG channels: a notch filter
to remove 60 Hz power line interference, and a band-pass filter to allow a frequency range
of 0.5-180 Hz through. Normalization of EEG amplitude is then carried out as the last step
to minimize the difference in EEG amplitudes using min-max normalization across different
subjects. After the preprocessing steps, spectrograms are generated for each EEG channel
to transform data to the time-frequency domain. Each 30-second epoch is transformed into
log-power spectra via a short-time Fourier transform (STFT) with a window size of two
seconds and a 50 % overlap, followed by logarithmic scaling. A Hamming window and
256-point Fast Fourier Transform (FFT) are used on each epoch. This results in an image
S ¢ RFXT where F' = 129 (the number of frequency bins), and 7' = 29 (the number of
spectral columns).

4.3. Network Implementation

For extracting features for the adversarial neural network, we use the same architecture of
Biswal et al. (Biswal et al. (2018)). It includes a 3-layer of 1-D CNN (kernel size = 3),
which was applied to each EEG channel, followed by batch normalization (BatchNorm),
rectified linear (ReLU) units, and max pooling units, we called it as SpectNet here. A
cross-entropy loss function is used as a domain discriminator £4 and classification £,. We
apply back-propagation to train the classifier layer and all domain discriminators. Mini-
batch stochastic gradient descent (SGD) is employed with the momentum of 0.95 using the

11
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Figure 4: To assess the efficacy of the proposed attentive adversarial network and relevant
prior work, we developed two baseline systems for performance comparison. a) Extract the
spectrogram from two common channels and feed to 3-layer convolutional layers followed by
a softmax as the classifier. b) Extract the spectrograms from all available channels, feed to
3-layers convolutional layer, and utilize the softmax as a classifier for 5-stage sleep staging.
Reproduced from (Nasiri (2020)) “CC by 4.0".

learning rate and progressive training strategies as in (Ganin et al. (2016)) to learn the
weights of a deep neural network. To address the class imbalance, we balance each batch
for positive and negative examples, which leads to oversampling the positive class. The
proposed methods were implemented with PyTorch 0.4 and Python3. See Figure 4.

4.4. Evaluation Metrics

To evaluate the proposed approach performance and assess how adversarial domain adap-
tion network helps to develop a model with high generalizability, we initially conduct simple
experiments. Similar to the literature on sleep stage assessment, to evaluate model perfor-
mance, accuracy, specificity, sensitivity, and F1l-score per class are reported. The other
primary metric that we have used for performance evaluation of our proposed method is
Cohen’s Kappa coefficient (k). This metric measures the agreement between the labels
obtained by the algorithm and the ground truth annotations. Due to a large number of
patients, the SHHS database and the P18C database are considered as the training (la-
beled/source) and test (unlabeled/target) sets, respectively.

To assess the efficacy of the proposed attentive adversarial network, in addition to
relevant prior work, we developed two baseline systems for performance comparison.

12
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e Extract spectrograms of common EEG channels, C3 and C4, and use a 3-layer Spect-
Net, where it is followed by a fully connected neural network and softmax to classify
sleep stages.

e Repeat the above experiment with all EEG channels.

5. Results

Figure (5) provides the confusion matrix for sleep staging, which shows the SpectNet agree-
ment with expert scores. Sleep experts score each 30 second EEG epoch as wake, REM,
non-REM stage 1, 2, or 3. Table (2) presents the performance of each class achieved by using
a simple three-layer, SpectNet, with two common channels and all channels of P18C dataset,
respectively. Based on this experiment, using all available channels of P18C database boosts
the performance by 3% on average. It seems that when the algorithm exploits all channels,
the N1 class can be better distinguished than with fewer channels. The N1 stage is often
confused for wake and N2, and it is considered a transition period from being awake to
falling asleep. Colten et al. (Altevogt et al. (2006)) defined the N1 stage as “active sleep”,
which means N1 may also occur between other stages of sleep, such as between N3 and
REM. Therefore, it is often confused with many other stages, as we can see in confusion
matrices in Figure (5).

2 125646 5997 10874 2023 1018 < 129286 5327 8311 1703 931
;“’ 86.32% 4.12% 7.47% 1.39% 0.70% 320000 g 88.82% 3.66% 5.71% 1.17% 0.64% 320000
= 4577 95336 6957 5739 1263 = 4429 96464 6433 5351 1195
4 4.02% 83.72% 6.11% 5.04% 1.11% 4 3.89% 84.71% 5.65% 4.70% 1.05%
240000 240000
2 2
S 24414 22207 64469 21787 2532 S . 22301 20758 70090 21001 1259
s 18.03% 16.40% 47.61% 16.09% 1.87% i 16.47% 15.33% 51.76% 15.51% 0.93%
3 160000 g 160000
o~ 6737 19022 25536 311582 9380 ~ 5472 18463 20623 320552 7147
z 1.81% 5.11% 6.86% 83.70% 2.52% z 1.47% 4.96% 5.54% 86.11% 1.92%
80000 80000
™ 1057 1179 2440 14356 82646 o 793 1189 1850 12211 85635
z 1.04% 1.16% 2.40% 14.12% 81.28% z 0.78% 1.17% 1.82% 12.01% 84.22%
0 0
Wake REM N1 N2 N3 Wake REM N1 N2 N3
Predicted Label Predicted Label
(a) Using common channels (C3 and C4) (b) Using all channels

Figure 5: Confusion matrix for sleep staging for using all data from P18C dataset, showing
SpectNet agreement with expert scores. The SpectNet is trained on SHHS dataset and
tested on two common channels and all channels. Reproduced from (Nasiri (2020)) “CC by
4.0”.
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Table 2: Per-class performance achieved using two common channels (C3 and C4) and
all available channels by a 3-layer CNN network and a softmax layer

Sleep Stage two common channels all channels # Samples

Precision  Sensitivity F1-Score Kappa Acc Precision Sensitivity F1-Score Kappa Acc

Wake 0.77 0.86 0.81 0.76  0.92 0.79 0.88 0.83 0.79  0.93 145558

REM 0.66 0.83 0.74 0.68 0.91 0.67 0.84 0.75 0.70  0.91 113872
N1 0.58 0.47 0.52 043 0.85 0.65 0.51 0.57 0.50  0.87 135409
N2 0.87 0.83 0.85 0.73  0.86 0.88 0.86 0.87 0.76  0.88 372257
N3 0.85 0.81 0.83 0.80 0.95 0.89 0.84 0.86 0.84 0.96 101678
avg 0.75 0.76 0.75 0.68  0.90 0.78 0.79 0.78 0.72 091

Using all channels from two datasets and using adversarial domain adaptation (ADA)
(Ganin et al. (2016)), with the SHHS database as the training set and the P18C database as
the test set, as shown in Figure (6) we see an improved performance with all metrics. The
performance on the test set is presented in Figure (7). Table (3) presents the performance of
each class achieved with this method. One can conclude that adversarially learning trans-
ferable features across subjects boosts the performance of N1 class significantly. Finally,
the performance of multi-stage classification using multi-adversarial neural network with
attention mechanism is reported in Figure (7) and per-class performance is given in Table
(3). In terms of evaluation metrics, which are mostly used in the sleep staging task, the
proposed method outperforms the state-of-art algorithms on the 2018 P18C database. For
instance, Perslev et al. (Perslev et al. (2019)) obtained 0.77 Fl-score under 5-fold cross-
validation on the same dataset. The average accuracy of proposed method is 0.94 on the
unseen (P18C) database, which is significantly higher than other state-of-the-art methods
(Biswal et al. (2018)). Our proposed method significantly beats their results after using
adversarial training with an attention mechanism.

Dataset 1

‘ WMWWWWWM ‘ Spectrogram SpectNet
Wty o
Dataset 2 E:> ! »

C‘é .
‘%
s

<9 =
2R

¥
!
!

3
!

o M«“/\/\.M—wm A iy
~fv~v“v-~ﬁNM:t/*A’wAﬂwﬂwﬂm
MMWMANMMVWW

frequency

) Y Sy S ——— Y S

Figure 6: All channels from two datasets are used, and the spectrograms of EEG channels
are extracted. The spectrograms are fed to the 3-layers convolutional network (SpectNet),
followed by the domain discriminator and the classifier predictor. These three networks
adversarially train (Ganin et al. (2016). Note that the SHHS database and the P18C
database are used as the training and test sets, respectively. Reproduced from (Nasiri
(2020)) “CC by 4.0”.
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Figure 7: Confusion Matrix using all channels with domain adversarial network, using
SHHS database as training set and P18C database as test set without attention mechanism
(Figure (6)) and with attention mechanisms (Figure (2)). Reproduced from (Nasiri (2020))
“CC by 4.0".

Table 3: Per-class performance achieved using adversarial domain adaptation network
with/without attention mechanisms with all available

Sleep Stage without attention mechanism with attention mechanism # Samples

Precision  Sensitivity F1-Score Kappa Acc Precision Sensitivity F1-Score Kappa Acc

‘Wake 0.83 0.91 0.87 083 0.94 0.87 0.94 0.90 0.88 0.96 145558

REM 0.75 0.88 0.81 077 0.93 0.78 0.90 0.84 0.81  0.95 113872
N1 0.75 0.55 0.63 0.57  0.89 0.81 0.62 0.70 0.66  0.91 135409
N2 0.89 0.87 0.88 0.78 0.98 0.91 0.90 0.91 0.83 0.91 372257
N3 0.80 0.85 0.82 0.79 0.95 0.85 0.89 0.87 0.85 0.96 101678
avg 0.81 0.81 0.80 0.75  0.92 0.84 0.85 0.84 0.80 0.94

Feature Visualization: Figure (8) illustrates the discriminability of learned features
in the deep neural network without/with adversarial training for scoring sleep stages, us-
ing t-distributed Stochastic Neighbor Embedding (Maaten and Hinton (2008)). The figure
visualizes the network activations of the last hidden layer of DNN for each segment from
1000 samples for each class; 500 samples from the SHHS database and 500 samples from
Physionet Challenge 2018 database. Figure (8(a)) shows the representations generated by a
conventional deep neural network, where classes are less easily distinguished; there is signif-
icant confusion between N1 and wake, and between REM and N2. However, an adversarial
neural network with an attention mechanism learns features with high transferability and
discriminability. (see Figure (8(b).) As mentioned earlier, this figure shows that the N1
stage may not be like any stage, and it is considered as a transition stage between other
stages (Wake, REM and N2).
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Figure 8: t-SNE visualization of the last hidden layer representations in the feature ex-
traction network without/with adversarial training. Colored points represent the different
stages, showing how the algorithm discriminate classes. Wake (blue), REM (green), N1
(red), N2 (purple) and N3 (flax). Reproduced from (Nasiri (2020)) “CC by 4.0”.

Attention Mechanism: To investigate the key channels (sensors) on the scalp, we
show the attention weights across channels for a randomly selected sample from Physionet
2018 Challenge database. Figure 9 illustrates this - the hotter the color, the larger the
attention value. It can be seen that the network pays more attention to features extracted
from channel C4 rather than channel C3. Moreover, it seems that the C4 channel is a more
transferable channel across databases and subjects. These results intuitively show which
channel can be used for a wearable devices to capture sleep stages.

Figure 9: Attention visualization of of the last convolutional layer over sensors on the brain
by illustrating the corresponding attentions weights over the channels. It can be seen that
the network pays more attention to features extracted from channel C4 rather than channel
C3. Moreover, it seems that the C4 channel is a more transferable channel across databases
and subjects. Reproduced from (Nasiri (2020)) “CC by 4.0”.
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6. Conclusion

In this work, adversarial training with an attention mechanism was proposed for the sleep
staging task across two large and heterogeneous datasets. In the cross-dataset classification
task, inherent inter-subject variability, hardware acquisition heterogeneity, and recording
environment differences lead to different probability distributions between individuals, and
hence poor generalization across subjects/dataset. Potentially, individuals with different
biomedical demographics and phenotypes would provide enough diversity in the dataset, in
which a conventional network cannot be robust to such variabilities, although given the need
to factor in differences in montages, electrode placement errors and hardware systems, the
dataset would likely be prohibitively large. The proposed method uses a multi-adversarial
network to attend to relevant channels across datasets and highlight the important part of a
segment of signal, and extract transferable features across the dataset, which achieves state-
of-the-art performance (without prior knowledge) on a large public dataset, the Physionet
2018 Challenge database. The proposed method identified the important channel (C4),
which suggests single-channel sleep staging with acceptable performance is possible. The
method developed in this work can be applied to other biomedical signals (e.g. the elec-
trocardiogram (ECG), electromyogram (EMG) and photoplethysmogram (PPG)), where
multiple datasets from different hospitals are recorded for the same task. The ultimate
goal of the research presented here, however, is to solve real-world automate sleep stage
classification problems. Therefore, in addition to integrating adversarial training with at-
tention mechanism, there are two main directions we would like to pursue for future work:
1) to apply the method in the cross-modality scenario, where we combine different modality
such as EEG, ECG, and PPG which are recorded simultaneously in sleep; 2) to extend this
method to leverage a dataset with different labels, i.e., partial domain adaptation, where
the label sets are not equal across the dataset. This is a is much more challenging, but
closer to real-world scenarios.

Moreover, it should be noted that DL models do not generalize well to unseen data.
Typically, they are fine-tuned later on new patients, requiring new labels that are costly and
time-consuming, which reduces clinical applicability. This work presents a method which
reduces the labeling cost, by leveraging readily-available labeled data from a different but
related dataset.

For generalizable insights, we note that the approach described here can apply to other
similar domains that suffer from the same issues, such as electrocardiography (ECG). Place-
ment of ECG leads is as subject to the user as in the case of EEG, and the body type variance
is even larger, particularly between genders. Moreover, there is the potential to generalize
the approach presented here could generalize to very different modalities, where the popula-
tion clusters into different phenotypes, such as in imaging, voice recordings, or gait analysis,
for example.
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