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Abstract

Precision medicine’s slogan is “right drug — right patient — right time.” Implicit in the
slogan is “right dose”; however, determining the right dose for any one patient can be
challenging when dose-response data are limited. Bayesian methods, with their ability to
explicitly incorporate prior information to supplement limited data, have been proposed
as a solution to this problem. Although Hamiltonian Monte Carlo (HMC) is a leading
methodology for inference in Bayesian models because of its ability to capture posterior
distributions with high fidelity, dose personalization studies commonly use simpler Maxi-
mum A Posteriori (MAP) inference methods. The impact of the choice of inference engine
on dose decision-making has not been explored. To better understand this issue, we per-
form a simulation study characterizing the differences between inferences made via MAP
and HMC for personalized dosing strategies. The simulation study uses a new Bayesian
pharmacokinetic model for apixaban pharmacokinetics written in an open source Bayesian
language; the model code and posterior summaries of all parameters will be publicly avail-
able. We demonstrate that the differences between HMC and MAP are non-trivial and can
greatly affect the choices surrounding dose selection for personalized medicine.

1. Introduction

Precision medicine’s slogan is “right drug — right patient — right time”. Implicit in the slogan
is “right dose”; however, determining the right dose for any one patient can be challenging.
The anticoagulant Warfarin offers a good example of these challenges; physicians choose an
initial dose based on guidelines and their own experience. They then closely monitor the
patient’s International Normalised Ratio (INR), which measures how long it takes blood to
clot, and in response they adjust the dose over time.

Pharmacokinetic and statistical models of how drugs behave within an individual can
alleviate some of these challenges by predicting the effects of different doses based on pa-
tient covariates. In some studies (Schwarz et al., 2008; Sohrabi and Tajik, 2017; Caldwell
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et al., 2007) a cohort of patients will have an appropriate maintenance doses determined
empirically and these are then regressed onto patient covariates. In others (Ohara et al.,
2019; Zhu et al., 2017; Xue et al., 2017) patient pharmacokinetics are directly modeled and
can be simulated under different dosing regimens to find an appropriate dose. In both cases,
uncertainty in the models can be assessed and can help guide clinical decisions as to what
dose is best or what dose to try next.

Both types of models can provide guidance for individual patients, but only when there is
enough data so that the models are accurate and reliable. For personalized pharmacokinetics-
based dosing, this amount of data is rarely available in practice. Obtaining sufficient data to
learn a patient’s pharmacokinetic parameters requires a lengthy observation period which
few patients are willing or capable of committing to. Population pharmacokinetic models
could be used in place of a patient’s pharmacokinetics, but treating the patient as “average”
is precisely what precision medicine seeks to improve upon.

In many contexts where limited data area available, Bayesian methods with informative
priors have been proposed. Model priors allow analysts to specify their beliefs about model
parameters prior to seeing a new patient’s data, and to combine those beliefs with new
observations to form personalized predictive models. This allows models to “hit the ground
running” so to speak, and makes use of all available data to support decision-making. To use
all but the simplest of Bayesian models for decision-making requires computational approx-
imation techniques to obtain model estimates and predictions. Several approaches exist for
generating approximate samples from the posterior distribution, with Hamiltonian Monte
Carlo (HMC) being considered the gold standard (Neal, 1996; Hoffman and Gelman, 2014;
Carpenter et al., 2017; Tripuraneni et al., 2017). Despite HMC being the preferred method
by theorists and applied Bayesians alike, methods like Maximum A Posteriori (MAP), in
which the posterior mode is computed via optimization and then a Laplace approxima-
tion is performed, continue to be used in population Bayesian pharmacokinetic studies as
late as 2020 (Brooks et al., 2016; Nguyen et al., 2016; Preijers et al., 2019; Stifft et al.,
2020). HMC and MAP are two different approaches with different strengths and different
theoretical motivations. Naturally, this raises questions regarding how decisions in person-
alized medicine may be affected by the use of different methods for performing inference,
even using the same model and data. We seek to answer these questions by developing a
new, high-fidelity Bayesian pharmacokinetic model and then investigating the impact of the
choice of inference method on precision medicine decisions.

Generalizable Insights about Machine Learning in the Context of Healthcare

The main methodological insight we gained was that although predictions made by HMC
and MAP may appear to be very similar according to common error metrics, they can lead
to very different personalized dosing decisions. The main contributions of this paper are as
follows:

1. A new Bayesian model for apixaban pharmacokinetics written in an open source
Bayesian language. We make the model code and posterior summaries of all pa-
rameters publicly available at https://github.com/Dpananos/PKBayes.
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2. A simulation study demonstrating that inferences made via MAP and HMC lead to
very different dosing strategies.

3. An induction dosing model for apixaban based on desired trough concentration level
after a first dose.

2. Background

Pharmacokinetic Modelling

Pharmacokinetics is the study of the dynamics of a mass of drug in the body and is concerned
with the absorption, distribution, metabolism, and excretion of that drug. Differential
equations (equations which relate the derivative of an unknown function to itself) are often
used to describe how these dynamics evolve over time. The differential equation models
in pharmacokinetics are called “compartmental models” as they idealize different parts of
the body as compartments from which drug can flow in and out at rates proportional to
how much drug is presently in that compartment. If the differential equation is not too
complex, the solution can be written in terms of analytic functions. In the case where the
differential equation cannot be solved in terms of analytic functions, a rich literature of
numerical techniques exist to approximate the solution to within quantifiable precision. In
either case, estimation of model parameters is of interest as they represent pharmacokinetic
measures, such as the volume of distribution or rate constants for which the drug is absorbed
into/excreted out of a compartment. If the parameters for such a model are known, we can
use the model to make predictions about drug concentration as a function of time and
dose. This in turn can be used to select a dose that meets given criteria about what the
concentration function should look like.

Parameter estimation for these models can be done in both frequentist and Bayesian
frameworks. In a Bayesian framework, parameter estimation begins by specifying a prior
distribution which reflects the knowledge of parameters before seeing data. Once data are
observed, Bayes’ rule can be used to get the posterior distribution. This distribution pro-
vides information about what parameter values have most plausibly generated the observed
data. By virtue of being a probability distribution, the posterior can be summarized by
expectations to get point estimates of model parameters. Shown in figure 1 is a visual
summary of how Bayes’ rule and Bayesian modelling of pharmacokinetics works using pseu-
dodata. The leftmost panel is our prior distribution. Each concentration curve results from
specific combinations of parameters for the model which are believed to be plausible before
seeing data. Once data are observed (the middle panel), application of Bayes’ rule yields the
rightmost panel. Concentration curves in this panel correspond to combinations of parame-
ters which have most plausibly generated the data, resulting in concentration curves which
have most plausibly generated the data. Note that in this setting, because we have many
measurements, the pharmacokinetic model is well-determined and the posterior uncertainty
is small. Except in very simple cases, the integrals required to evaluate the posterior become
intractable; thus, computational approximations are required to fit Bayesian models.
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Figure 1: A demonstration of a Bayesian workflow for pharmacokinetic models. The left-
most panel represents the prior. Each curve corresponds to a unique set of model
parameters which induce each concentration function. In the center panel is the
data observed from a single patient. Conditioning on this data yields the right-
most panel. Each curve corresponds to a unique set of model parameters drawn
from the posterior distribution.

Dosing Decisions

Vitamin K antagonists, such as the popular oral anticoagulant Warfarin, are known to have
narrow therapeutic windows as well as drug and food interaction. Determination of a main-
tenance dose is consequently a procedure with frequent monitoring and followup, with some
sources recommending monitoring daily or every other day until the INR stabilizes for two
days. The narrow therapeutic window forces investigators to also consider the pharmacody-
namics (the study of the onset, intensity, and duration of the drug response and how these
are related to the concentration of the drug at its site of action) of Warfarin in addition to the
pharmacokinetics when determining dose size as concentration of the drug alone is not suffi-
cient to infer the antithrombotic effect in patients. The introduction of factor Xa inhibitors
like apixaban has alleviated some of the difficulties in prescribing anticoagulants. Factor Xa
inhibitors have been shown to have lower risk for bleeding than Warfarin in patients with
atrial fibrillation (Vinogradova et al., 2018) and also allow for fixed dosing without frequent
monitoring of INR. Furthermore, unlike Warfarin, the pharmacodynamic effect of apixaban
on clotting is closely correlated with the concentration in the plasma (Byon et al., 2019),
making pharmacokinetic modelling more informative on antithrombotic effect as compared
to Warfarin. However, as of writing this paper there is little information on the therapeu-
tic window, making selecting dose sizes large enough to avoid thromboembolism difficult.
Furthermore, studies have demonstrated that inter-patient variability of apixaban plasma
concentrations is much higher than was initially believed (Gulilat et al., 2020). In this work,
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we develop personalized dosing whose goal is to find the minimum dose that avoids plasma
concentrations that are too low.

3. Methods
Bayesian Model

To achieve our three objectives of 1) developing a new Bayesian pharmacokinetic model for
apixaban, 2) investigating the impact of MAP versus HMC inference on dosing decisions
and 3) developing an induction dosing model for apixaban, we fit a hierarchical mixed
effects model of apixaban pharmacokinetics using data from Beaton et al. (2018). Thirty-
six participants were given 5 mg of apixaban and 100 ml of water in a fasted state. Blood
plasma concentrations of apixaban were recorded over the course of 12 hours.

Table 1: Summary of data from Beaton et al. (2018).

Female Male Overall
(N=23) (N=13) (N=36)
Age
Mean (SD) 48.8 (11.6) 51.7 (11.6) 49.8 (11.5)
Median [Min, Max]  49.0 [26.0,67.0] 51.0[31.0,70.0] 50.0[26.0, 70.0]
Weight
Mean (SD) 84.6 (23.5) 94.0 (25.6) 88.0 (24.4)
Median [Min, Max]  82.8 [54.7, 136] 87.2[62.0, 137] 83.5[54.7, 137]
Creatinine
Mean (SD) 68.5 (12.1) 67.2 (13.5) 68.0 (12.5)
Median [Min, Max]  66.0 [50.0, 95.0] 65.0 [50.0, 95.0] 65.0 [50.0, 95.0]
BMI
Mean (SD) 29.9 (6.74) 31.5 (5.62) 30.5 (6.33)

Median [Min, Max]

29.5[18.3, 42.3]

31.8[23.3,40.7]

31.3[18.3, 42.3]

Since participants were given a single dose of apixaban in a fasted state, we use a single-
compartment pharmacokinetic model with first order absorption and elimination. The solu-
tion to the differential equation describing mass transit, and consequently the concentration
function, is then

F'-D ke-ka [ _po—5)  —ke(t—)
———— ——e. a - € <
Cl ke —kq (e ’ e
y(t) = M
0 else

Here, D is the size of the dose in mg, F' is the bioavailability (fixed to 0.5 for apixaban
Byon et al. (2019)), Cl is the clearance rate in units litres per hour, k, is the rate constant
of absorption into the volume of distribution in units 1/hours, and k. is the elimination
rate constant in units 1/hours. We include a time delay, 4, to relax the assumption that
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absorption begins immediately after ingestion. Parameters are considered as random effects,
with some population mean and variance (which is estimated from the data).

Priors for k. and k, are not defined explicitly. Rather, our model puts priors on the
time to max concentration, which can be expressed as a function of the parameters in
equation (1)

_ In(ky) — In(ke)
tmaz = W (2)

and on the ratio between k. and k,, which we call «

a=—. (3)

We choose to place a prior on the quantity a because it arises when non-dimensionalizing
(Lin and Segel, 1988) the differential equation governing mass transit of the drug in and out
of the volume of distribution. The plasma concentration function is a version of the “flip-
flop” model (Wakefield, 1996; Salway and Wakefield, 2008), since different parameterizations
of this model can yield the same curve, leading to model un-identifiability. To ensure the
model is identifiable, we require k. < k, as has been done in previous Bayesian analyses
of this model (Wakefield, 1996; Salway and Wakefield, 2008). This requirement bounds «
to the unit interval. In principle, information on the elimination rate constant could be
obtained by performing a linear regression on the log concentration values in the latter
half of the concentration profiles where the drug is being eliminated from the body. To
preserve as much data as possible for model fitting, we forgo this approach. These two
sets of equations are used to parameterize the absorption and elimination rate constants as
follows

ko = (4)
ke = koo (5)

Details on the prior distributions for each parameter and the model likelihood can be
found in the supplementary material. We also include a summary of the model’s posterior
as well as details on simulating data from the model’s posterior predictive distribution to
generate pseudopatients.

Model Fitting and Diagnostics

For HMC, prior/posterior predictive checks and model fitting was performed using Stan
(Carpenter et al., 2017) to draw from the prior/posterior. Twelve chains were initialized and
run for 4000 iterations each (1000 for warmup allowing the Markov chain the opportunity
to find the correct target distribution and 3000 to use as samples from the posterior). Stan
monitors several diagnostics none of which detected problematic HMC behavior!.

We use Stan’s optimization capabilities to compute the MAP estimates. The L-BFGS
optimizer was used to find the posterior mode. The optimizer terminated when either

10,000 iterations had been performed or when the value of the objective function stopped

1. 0 divergences, all Gelman-Rubin diagnostics < 1.01, smallest effective sample size ratio 16%.
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changing within a tolerance of 1 x 107!, Once the mode was located, 10,000 samples from
the Laplace approximation to the posterior were obtained. Constrained parameters were
transformed to the appropriate space before sampling.

Determination of a Personalized Dose

The results from both HMC and MAP yield samples from the approximate posterior of
Clj, ke, kqj, and d; for each of the j patients. For any given posterior sample, these pa-
rameters can be combined to compute a predicted concentration for patient j at time ¢ by
using equation (1). We determine a personalized dose size by evaluating the pseudopatients’
concentration function under different dose sizes D and then computing posterior proba-
bilities of failing to surpass concentration thresholds. When we have posterior samples,
equation (1) turns into a function of the dose size and time conditioned on patient.

We perform two experiments to compare HMC and MAP. In our first experiment, we
determine the posterior probability of failing to exceed a concentration of 20 ng/ml 12 hours
post dose for each pseudopatient across a variety of dose sizes. We choose 20 ng/ml as our
threshold for this experiment because the median concentration at 12 hours post dose in the
data from Beaton et al. (2018) is approximately 20 ng/ml. In our second experiment, we
determine the posterior probability that the max concentration fails to exceed 80 ng/ml. We
choose 80 ng/ml as our threshold for this experiment because the median max concentration
in the data is 79 ng/ml (though it is important to note that it is unlikely that these patients
were observed exactly at the time which the peak concentration was achieved). These
quantities represent two different ways of assessing a patient’s risk of being below a given
threshold. The chosen threshold is arbitrary, but our method generalizes to any threshold.
For each experiment, the risks are computed across a grid of dose sizes of 0 mg to 60
mg, yielding risk as a function of dose size. For each pseudopatient, we interpolate these
estimates using a monotone Hermite spline and then invert the risk curve; the inverted risk
curve maps risk to dose. This allows us to determine a dose size which produces a specified
risk level.

4. Results
Bayesian Model

Diagnostic plots for Bayesian model fit to the real apixaban data is shown in figure 2.
Posterior population prediction intervals (that is, the result of integrating out the random
effect of each patient) of the observed concentration are realistic and to the eye appear
similar to the observed data (top left of figure 2). Residual plots (observed minus posterior
mean) indicate homogeneity of variance on the log scale, which is consistent both with
expert knowledge on the measurement process and the likelihood we choose (bottom left of
figure 2). Predicted concentrations tend to agree with observed concentrations (top right
of figure 2), and posterior predictive draws have similar empirical cumulative distribution
functions as the observed data (bottom right of figure 2 ). In figure 3, we show concentration
functions obtained from draws from our prior distribution as well as two patients with best
and worst fit as measured by mean absolute percentage error (best: 3.29%, worst: 26.4%).
Because our HMC diagnostics do not indicate problematic behaviour in the Markov chains,
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Figure 2: Diagnostic plots for our Bayesian model. Top left shows the posterior predictive
distribution plus observed data. Data points gave been perturbed to prevent
overlapping. Top right shows the predicted values along with accompanying 95%
equal-tailed posterior credible interval. Bottom left shows the residuals (on the log
scale) between the observed concentrations and the posterior mean concentration,
bottom right shows the cumulative density function for the observed data (black)
as well as draws from the posterior predictive distribution (gray).

and because the model diagnostics indicate adequate fit, we believe the obtained model’s
posterior predictive distribution is adequate for simulation of pseudopatients.
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Figure 3: The leftmost panel shows 250 draws from the prior defined in the previous section.
The center panel shows data from two patients who achieved the best (blue) and
worst (red) model fit as measured through mean absolute percent error. The
rightmost panel shows 250 draws from the posterior for these patients. Not shown
here are the other 34 patients in our data, for which the model is also capable of
performing predictions for.

HMC MAP
MSE (SD) | 6.67 (15.93) | 8.57 (19.93)
MAE (SD) | L.71 (1.94) | 1.97 (2.17)

MAPE (SD) | 0.04 (0.03) | 0.05 (0.03)

Table 2: Comparison of HMC and MAP on three loss functions common in pharmacokinet-
ics: Mean Squared Error (MSE), Mean Absolute Error (MAE), and Mean Absolute
Percentage Error (MAPE). The loss was computed on samples not seen by our
model. Included in parentheses are the standard deviations of the loss values.

Fit on Simulated Patients Using HMC and MAP

Initial comparisons of predicted values indicate that both HMC and MAP yield similar pre-
dictions to one another, and similar predictions to actual values of unseen data. Examining
predictions alone, it would seem that HMC and MAP are equivalent, or at the very least
similar enough so as to not have strong preference for one over the other. When using
posterior means, HMC results in lower prediction error on unseen data (see table 2) as
measured with Mean Squared Error (MSE), Mean Absolute Error (MAE), and Mean Abso-
lute Percentage Error (MAPE), but these are not stark differences. Estimates of posterior
uncertainty between MAP and HMC can however vary a great deal. Shown in figure 4 are
19 of the 100 simulated patients which have a MAP equal tailed posterior interval at least
50% larger as compared to their HMC equal tail posterior interval at the widest point. We
note that while not shown explicitly, unobserved concentrations lie entirely within the HMC
and MAP posterior intervals.
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Difference in Estimated Dose To Achieve Target Risk

By inverting the risk curve, we can obtain dose size as a function of risk. Shown in figure 5
are the differences between doses computed from HMC and MAP posteriors to achieve the
indicated level of risk. The left panel shows the difference in doses in order to achieve a
concentration of at least 20 ng/ml 12 hours post dose. For a majority of patients, MAP
and HMC agree to within 1 mg though some pseudopatients see a much larger dose recom-
mendation by HMC than by MAP. The right panel shows the difference in doses in order
to achieve a max concentration of 80 ng/ml. MAP tends to always recommend larger doses
than HMC for this scenario, with the difference between recommended doses becoming
larger as the desired risk becomes smaller.
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Figure 5: Left: Differences between the estimated doses from MAP and HMC to achieve
the indicated risk of having a concentration of apixiban smaller than 20 ng/ml
at 12 hours post dose. Each line corresponds to one of the 100 pseudopatients.
HMC tends to recommend larger doses than MAP to achieve a desired risk of
having the patient’s concentration at 12 hours post dose be below 20 ng/ml. This
tendency to recommend larger doses is consistent across desired risk levels. Right:
Differences between estimated doses from MAP and HMC to achieve the indicated
risk of having a max concentration smaller than 80 ng/ml. Some pseudopatients
see dose recommendation differences as large as 10 mg and are thus cut off by the
y axis limits. Red lines indicate where the two methods would perfectly agree.

Calibration for Dosing Decisions

Since all pseudopatients were simulated, the true concentration function as a function of
the dose size (equation (1)) was known. To further compare HMC and MAP for decision
making, we took estimated dose size to achieve a desired risk and computed what the con-
centration curve under the recommended dose size. We could then compute the number of
pseudopatients which actually exceeded the threshold, thus allowing us to examine the cali-

11
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bration of HMC and MAP. The calibration curves for HMC and MAP for both experiments
are shown in figure 6.

In the first experiment (left of figure 6), HMC is better calibrated than MAP. This
means that when a dose is selected, in order to a achieve a risk of being below 20 ng/ml
at 12 hours post dose of r, approximately r x 100 pseudopatients have a true concentration
function which is smaller than 20 ng/ml at 12 hours post dose. In contrast, MAP is poorly
calibrated, and sees more pseudopatients failing to exceed the 20 ng/ml threshold than was
desired. Calibration in our second experiment again shows than HMC is better calibrated
than MAP, but calibration seems to become worse as the desired risk becomes larger. When
we use dose sizes recommended by MAP to achieve a 50% probability of exceeding the 80
ng/ml threshold, only 26% of pseudopatients actually have a max concentration which
exceeds the threshold.

e HMC e MAP e HMC e MAP

100% 100%
75% 75%
50%

50%

25% 25%

Calibration For Experiment 1
Calibration For Experiment 2

0% 0%

10.0%  20.0% 30.0% 40.0%  50.0% 10.0%  20.0% 30.0% 40.0%  50.0%
Desired Risk Desired Risk

Figure 6: Left: Calibration curves for assessing risk of being below 20 ng/ml. Each dot
represents the proportion of the 100 pseudopatients which fail to exceed the 20
ng/ml threshold. When doses are chosen from samples obtained via HMC, then
probabilities are well calibrated. When doses are chosen from samples obtained
via MAP, more pseudopatients fail to exceed the threshold than were specified.
Right: Calibration curves for assessing risk of the max concentration being below
80 ng/ml. HMC appears to be better calibrated than MAP, though the calibration
could stand to improve.
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5. Discussion

While prediction errors of the point estimates produced by MAP and HMC are very similar
as measured by 3 losses common to pharmacokinetic research, they each produce very
different estimates of uncertainty. Such estimates are necessary for decision making under
uncertainty, where an expected loss is computed over a posterior distribution. In this study,
for a given dose, MAP assigns a significant amount of probability mass to concentrations
which are far lower than the concentrations considered plausible by HMC. The extent
to which this discrepancy would change decisions depends on the loss function, but we
see substantial differences in our two example experiments for personalized dosing. The
difference in uncertainty between MAP and HMC results in small disagreement for dose
size for the majority of patients, but very large disagreement for a sizable minority of about
20%. The observed difference in uncertainty for the concentration function between MAP
and HMC are likely due to discrepancies in uncertainty over the individual PK parameters:
Fach of the 19 pseudopatients in figure 4 see MAP and HMC disagree strongly on posterior
uncertainty for the parameters k, and k,. MAP lends credence to higher values of k, and
lower values of k. as compared to HMC. The differences in uncertainty in these parameters
is likely the cause of the observed difference in uncertainty in concentration levels. This
translates into much wider equal-tailed posterior intervals for concentration using MAP,
with 19 out of 100 patients having an MAP equal tailed posterior credible interval at least
50% as wide or wider at their widest point than their HMC equal tailed posterior interval.
For each of these 19 patients, MAP appears to have a lower interval estimate far below that
of HMC, making it appear as if lower predicted concentrations are probable. This in can
make a given proposed dose appear risky in terms of allowing concentration to fall too low;
which in turn leads to an increase in recommended dose when the model is asked for a dose
that bounds this risk.

While the posterior distribution for this model is too complex to be analyzed analyti-
cally, there are good theoretical reasons to prefer HMC over MAP when analysts seek the
posterior expectation of some function of parameters. These reasons are nicely summarized
by Betancourt (2017), but can be explained by the fact that expectations are computed
over volumes, and in high dimensional space there exists more volume away from the mode
than in a neighbourhood around it. Because the volume near the mode is so small, these
regions of parameter space contribute negligibly to expectations. Instead, regions of pa-
rameter space where the product of probability density and volume is large (i.e. the typical
set) should contribute more to expectations, and this is where our chosen method should
be focusing its computational power. Hamiltonian Monte Carlo does exactly this, and thus
we prefer it to Maximum A Posteriori.

Neither HMC nor MAP provide perfect representations of the posterior, and discrepan-
cies between the two methods are expected. However, the degree of discrepancy observed
in this study and its impact on dosing decisions reveals that these techniques are not in-
terchangeable. On reason for the observed difference might be an insufficient number of
observations. However, with 24 equally-spaced observations per each of the 100 simulated
patients, this simulation study represents an extremely optimistic (and likely unrealistic)
best case scenario. Even specialized studies of pharmacokinetics would collect fewer samples
from fewer patients, and even less data collection is practical in clinical practice. Hence,

13
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even if MAP and HMC were to converge to each other with enough data, this amount of
data is not available in practice. Another possible reason could be the chosen priors and/or
the likelihood, but the model used was identical for both inference methods and had strong
priors informed by existing pharmacokinetic data. We note that our proposed model does
not account for patient covariates (e.g. weight, BMI, creatinine, etc). Our model could be
extended to include covariates as input to the model to further personalize dose. Although
our models did not account for patient covariates, a secondary analysis was performed in
which patient level pharmacokinetic parameters were regressed onto patient covariates. In
this analysis, we observed the same disagreement in model uncertainty as shown in figure 4.
Because the uncertainty directly affects dosing decisions, we believe a model sampled us-
ing MAP which included covariates would also show similar calibration relative to a model
sampled using HMC.

6. Conclusion

We have presented a new Bayesian model for apixaban pharmacokinetics and an induction
dosing model for apixaban based on desired trough concentration level after a first dose.
We have also presented a simulation study demonstrating that inferences made via MAP
and HMC lead to very different dosing strategies; from this simulation study, we derive
some general conclusions and guidelines for Bayesian pharmacokinetic modelling as applied
to precision medicine.

Bayesian modelling using informative priors provides a practical approach for developing
personalized dosing strategies when data are limited. However, the evaluation of Bayesian
models, particularly with informative priors, typically focuses on the model itself - are the
priors plausible? Do posterior predictive checks look appropriate? In this work, we have
demonstrated that the inference technique can have an impact on decision making that is as
important as model fidelity, even when the impact on point prediction quality is minimal.
Specifically, we have shown that MAP-based inference, which is very commonly used in
pharmacokinetics, can lead to very different personalized dosing decisions than HMC-based
inference, even in a well-validated model.

Studies using MAP for Bayesian inference in pharmacokinetic models have been pub-
lished as recently as 2020. The speed and similarity to maximum likelihood makes MAP
an attractive and familiar approach as compared to HMC, which can take several minutes
to return samples and can use quite complex mechanisms to draw from the posterior. The
aforementioned studies have largely focused on point predictions of latent concentrations
where, as we have shown, MAP and HMC yield similar results. However, when uncer-
tainty information is used for decision-making, MAP and HMC can lead to very different
outcomes.

We recommend that if practitioners do use MAP, that they also compare model results
with HMC. Libraries exist to perform HMC in a variety of languages including R, python,
and Julia, making HMC widely accessible. Use of these libraries has the added benefit of
making analysis more transparent and reproducible for the community at large.
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Appendix A. Model Priors

Time to max concentration values for patient j are drawn from a log normal distribution

tmaz,jl i, or ~ LogNormal(g, ov) (6)
and « is drawn from a weakly informative beta prior to prevent degenerate cases when «
isOor1l

aj ~ Beta(2,2) . (7)

The rate constants for patient j, ke ; and k, ;, are determined from equations (4) and (5).
The clearance rate is modelled hierarchically

Cljlpcr, ocp ~ LogNormal(pey, ocrp) - (8)

Each patient is observed to have a non-zero concentration at time 0.5, so the time delay for
each patient is no larger than 0.5 hours. We place a beta prior on the delay

35|,k ~ Beta(g/k, (1 — ¢)/r) (9)

and multiply delta by 0.5 in our model to ensure the maximum delay is 0.5 hours. Here,
¢ is the mean of this beta distribution and x determines the precision of the distribution.
Shown in figure 7 is a Bayes net to exposit model structure at a high level.

Figure 7: Graphical description of the data generating process for our model. The data
consist of 36 patients, indexed by j. Each of the j patients are observed a total
of 8 times, with each observation index by i. The data are generated by drawing
random variables from their appropriate distribution at the top level and then
drawing child random variables directly there after. As an example, ¢ and x are
drawn, which are then used to draw the d;, which are then used to draw each of
the 8 concentration values, y; for each of the j patients.
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Priors for Model Hyperparameters

Estimates of the time to max concentration for apixaban place the population median ¢,
near 3.3 hours post dose (Byon et al., 2019). Assuming the median and the mean are
similar, this provides information for u; and so we use specify

p(pt) = Normal(log(3.3),0.25) (10)

The standard deviation of the prior for u; was selected via prior predictive checks in which
profiles are drawn and priors are assessed as realistic or not. We choose to err on the side
of caution and inflate the uncertainty in this estimate to account for population differences
between the measured patients in the data and the patients used in studies to determine
the estimates of ¢,,4,,. The population variability of ¢,,,; was modeled as

p(o¢) = Gamma(10, 100) (11)

Using these priors, we recover similar median, min, and max ¢,,,, values as reported by Byon
et al. (2019). Similarly, we model the population mean and variability for the clearance rate
as

p(1c;) = Normal(log(3.3),0.15) (12)
p(ocr) = Gamma(15,100) (13)

so that population estimates of the mean clearance rate are near 3.3 litres per hour with in-
flated uncertainty to account for possible population differences. We use weakly informative
priors for ¢ and x which induces an approximately uniform prior on .

p(¢) = Beta(20, 20) (14)
p(k) = Beta(20, 20) (15)

The tools used to measure the concentration of apixaban are believed to be within 10% of
the real concentration. This implies that the observational model is heteroskedastic. We use
a log-normal likelihood so that positivity of observed concentrations and heteroskedasticity
are respected. We place a lognormal prior on the likelihood’s variability with

p(oy) = LogNormal(In(0.1),0.2) (16)
Ci(t)|Cly, ka,j, ka,j, 05 ~ LogNormal(In(y(t)), oy) (17)

Posterior Summarization and Generating New Data

Once our model was fit on the pharmacokinetic data, the marginal posteriors were summa-
rized to create priors for the new model. Parameters for these priors were determined by
using maximum likelihood on the posterior samples. The priors for the new model are as
follows:
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oy ~ Normal(1.64,0.09) (18)
oc1 ~ LogNormal(—0.94,0.11) (19)
ue ~ Normal(0.97,0.05) (20)
o ~ LogNormal(—1.40,0.12) (21)
a; ~ Beta(2,2) (22)
oy ~ LogNormal(—1.76,0.12) (23)

[\)
—_

Lognormal distributions were used to respect positivity of some parameters. The posterior
predictive distribution of the model fit to the data from Beaton et al. (2018) was then used
to simulate 100 pseudopatients. The time delay, § was not used to generate these data as
0 does not affect the overall shape of the concentration function, it merely shifts it right.
The model with the priors defined by equations (18) to (23) was then refit on the 100
pseudopatients in order to examine differences between HMC and MAP in a “best case”
scenario. The pseudopatients were sampled between 0.5 and 12.0 hours after ingestion in
increments of 0.5. Draws from the posterior were used to predict latent concentration for
each patient at times 0.75 to 11.75 in increments of 0.5.
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