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Abstract

Linking secondary clinical data with patient-reported data at the patient-level brings to-
gether a comprehensive view of the patient but sample sizes can be a challenge. This
study demonstrates the fusion of Patient Reported Outcomes in surveys with clinical data
in claims enabling the study of associations between quality of life and disease-treatment
interactions at scale especially for rare diseases. In this work, we show the ability to im-
plement data fusion in a disease agnostic way thereby enabling the use of more advanced
machine learning algorithms on larger data sets, while still being able to use the resulting
fused data to perform disease specific analysis. This is in contrast to usual approaches
where the data fusion might be attempted on disease specific data sets which can be too
small to be amenable to analysis by advanced methods. The proposed data fusion method-
ology circumvents some of the assumptions typically imposed on the data fusion process
that are untestable and usually invalid by taking advantage of the subset of the data that
can be linked in the two data sources.

1. Introduction

In recent years, there has been an explosion in the number and type of data sets in healthcare
- electronic health records (EHR), claims data, patient surveys, molecular biomarker data
to name a few. One of the biggest challenges in healthcare analytics is that the data are
fragmented i.e. not all data sets have all the variables of interest and data are collected on
different sets of individuals, some of whom might overlap. With advances in record linkage
algorithms, these patients who overlap in different data sets can now be linked with high
degrees of accuracy. This has enabled researchers to have a more comprehensive view of
the patient by linking and combining data sets. One of the challenges of record linkage,
however, is that the overlap of patients between two data sets or the linked cohort for
a particular research question can often be small. To address these challenges related to
small sample size in linked data, we propose a solution based on data fusion. Data fusion
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is a special case of data integration in which one seeks to generate a synthetic data set by
combining two data sets that have disjoint records and some distinct variables.

In this work, our objective is to fuse two data sets with complementary variables - (1)
a national health survey data set containing patient reported outcomes, patient behaviors
such as smoking and exercising, work productivity amongst others and (2) health insurance
claims data containing a patient’s diagnosis and treatment history and associated costs.
While the methodology is applicable to the fusion and imputation of multivariate outcomes
of different kinds (continuous, dichotomous, categorical), in this work we focus on the fusion
of multiple patient reported outcomes (continuous).

Clinical Relevance The use of PROs in both clinical trials and observational studies can
provide valuable insights and evidence on the burden of disease, effectiveness, and cost
effectiveness of interventions from a patient perspective (Calvert et al., 2019). PROs are
increasingly being used to provide evidence for drug approval with patients being involved in
the entire decision making process, including the appropriate collection of PROs informed
by FDA (FDA) and EMA guidance (EMA, 2016). The fusion of these PROs with the
clinical information in the claims data regarding treatment, comorbidities, and costs can
give valuable insights regarding the burden of disease and cost effectiveness of interventions
from a patient’s perspective.

Technical Significance Typical data fusion procedures impose an assumption called the
conditional independence assumption, which is untestable and often invalid in most settings,
especially in healthcare. One solution around this is to use a third data set that has the
relevant variables from both data sets of interest. While practical if available, the quality
of this third data set can impact the validity of the fused data. This third data set could be
incompatible due to inconsistent definitions or if the data is from an incompatible population
with respect to the population of the data sets to be fused. In this work we exploit the
availability of the linked data set to circumvent the above issues. Further, we take advantage
of the larger non-disease specific linked data set and employ artificial neural networks and
statistical matching to fuse the data sources, which can then be used to investigate disease
specific questions. In this work, we show the ability to implement data fusion in a disease
agnostic way thereby enabling the use of more advanced machine learning algorithms on
larger data sets, while still being able to use the resulting fused data to perform disease
specific analysis. This is in contrast to usual approaches where the data fusion might be
attempted on disease specific data sets which can be too small to be amenable to analysis
by advanced methods.

Generalizable Insights about Machine Learning in the Context of Healthcare

Our contributions can be summarized as follows:

1. We demonstrate how to maximize the use of distinct non-overlapping healthcare data
sets to gain insights using machine learning methods.

2. Advanced machine learning methods usually need lot a of data and it is quite common
in clinical research for the sample size of the data set to shrink rapidly depending on
the inclusion/exclusion criteria for the cohort. We show how to tackle this scenario
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by solving a more general problem, thereby using all available data using advanced
methods, yet be able to answer questions for the cohort of interest.

The rest of the paper is organized as follows. In section 2, we review prior data fusion
approaches relevant to this work. Then, in section 3 we provide an overview of two data
sets used for our study. After that, in section 4 we introduce our data fusion approach.
Results from real world data are analysed are described in section 6. Lastly, in section 7
we summarize and discuss some limitations and future directions.

2. Related Work

An extensive review of the theory and practical applications of different data fusion tech-
niques can be found in (D’Orazio et al., 2006) and (Rässler, 2012). (Rässler, 2012) in
addition also introduce data fusion methods based on multiple imputation techniques. The
data fusion techniques reviewed in these monographs and implemented in most literature
can be broadly classified into three categories (refer to section 4 for more technical details):

1. Based on Conditional Independence Assumption (CIA), which is required to make
the joint distribution of the variables in the resulting data set identifiable. This
assumption cannot be tested using the fused data and is usually an invalid assumption
in the healthcare analytics setting.

2. Based on the use of an auxiliary data set, which is a third data set that has all the
relevant variables of interest and thus one can estimate the joint distribution of the
variables. The challenge is that such data sets are not readily available or may not
be suitable due to inconsistency in the definition of the variables or data being from
a different time frame which may not be suitable for the fusion problem at hand.

3. Based on partial identification, where the available information can be used to obtain
lower and upper bounds for parameters, thus resulting in sets of parameter estimates
where each element is compatible with the available information and results in sets of
complete synthetic data files.

Our work differs from the above approach in that we overcome the above limitations by
taking advantage of the linked data available from the data sources to create the auxiliary
file. We no longer need to impose the CIA due to the availability of the auxiliary file.
Further, as the auxiliary data set is created from the source data sets, we no longer have
the issues related to definition inconsistency or data not belonging to the appropriate time
frame. Further, we use the auxiliary data approach in a multiple imputation framework to
account for the uncertainty in identifiability for inference.

Data fusion techniques commonly implemented often assume a multivariate normal dis-
tribution for continuous outcomes (or fused variables) and a multinomial distribution for
categorical outcomes to model the conditional distribution of the outcomes given the rel-
evant variables. The methods also do not enable one to mix outcomes of different types.
More recently, methods have been developed that employ more advanced methods to model
the conditional distribution. For example, (Endres and Augustin, 2016) propose probabilis-
tic graphical models as a tool for statistical matching of discrete data by Bayesian networks.
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(Reiter, 2012) present an approach for data fusion when some values are confidential and
cannot be shared along with methods based on Bayesian finite population inference. (Ah-
fock et al., 2019) compare model based approaches to nearest-neighbour imputation for
non-Gaussian data where the conditional independence assumption might be invalid. Our
work differs from this typical approach in that we model the conditional distribution of
the outcomes given the relevant variables using artificial neural networks which enables
one to model multivariate outcomes that are of different types. We provide details of the
methodology in section 4

3. Data Sets

In recent years, there has been an increase in the involvement of patients in decisions
regarding their healthcare (Richards, 2017). Patient Reported Outcomes (PROs) are one
way to measure what matters to patients. PROs are questionnaires completed by patients
that assess the effects of disease and treatment on their symptoms, functioning, and health
related quality of life from the patient’s perspective. The use of PROs in both clinical
trials and observational studies can provide valuable insights and evidence on the burden
of disease, effectiveness, and cost effectiveness of interventions from a patient perspective
(Calvert et al., 2019). PROs are increasingly being used to provide evidence for drug
approval with patients being involved in the entire decision making process, including the
appropriate collection of PROs informed by FDA (FDA) and EMA guidance (EMA, 2016).
Thus, data sources that provide PROs and the patient’s history of diseases, comorbidities,
procedures, and treatments can be useful in investigating research questions regarding the
burden of disease and cost effectiveness of treatments from a patient’s perspective.

In this work, we consider two complementary sources of data - the National Health
and Wellness Survey (NHWS) data and the Komodo healthcare claims data. The NHWS
data provides PROs (including numerous validated instruments) and the claims data pro-
vides the patient’s health history of diagnoses, procedures and treatments and medical and
prescription costs. Below we provide a brief description of the two data sources.

3.1. National Health and Wellness Survey (NHWS)

The NHWS provides a unique look into the healthcare market from the viewpoint of the
consumer. Data are collected annually from nearly 75,000 - 95,000 respondents (adults
aged 18 or older) in the US through a self-administered, internet-based survey. Panel mem-
bers are recruited through opt-in e-mails, co-registration with panel partners, e-newsletter
campaigns, banner placements, and affiliate networks. Data from the Current Population
Survey of the US Census (Census, 2011) are used to identify the relative proportions of age,
gender, and racial/ethnic groups in the US; these proportions are then mimicked during the
recruitment of panel members (using a random stratified sampling framework) to ensure the
final NHWS sample matches the demographic distribution of the US. Several peer-reviewed
publications have previously compared the NHWS with other governmental sources (Bolge
et al., 2009; Finkelstein et al., 2010, 2011). The NHWS survey is divided into a base survey
component, which all respondents complete, and disease-specific modules, which only select
respondents with specific disease complete. Below is a subset of the type of information
that is available within NHWS.
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• Demographics (e.g., age, gender, race, geographic region)

• Access to healthcare (e.g., insurance coverage)

• Occurrence and severity of diseases experienced (based on validated instruments) and
diagnosed (i.e., IBD and comorbidities)

• Respondent behaviors (e.g., exercise, smoking, alcohol use)

• Respondent thoughts and attitudes about healthcare

• Validated HRQoL PROs (i.e., SF-36v2 and EQ-5D-5L)

• Validated work productivity and activity impairment PROs (i.e., WPAI)

3.2. Healthcare Claims Data

Komodo Healthcare claims data is an expansive data set of medical and pharmacy claims
(>65 billion clinical/prescription encounters) that come from a variety of sources within
the United States (US), including hospital networks, physician networks, healthcare claim
processing companies (i.e. claims clearinghouses), pharmacies, and health insurers. Below
is a subset of the type of information that is available within the Komodo claims data.

• Enrollment data: Beginning date of enrollment in plan, end date of enrollment in plan

• Medical claims data: Date of service, Admission and discharge date (if inpatient), Di-
agnosis code(s), Procedure code(s) (including HCPCS codes for injections), Healthcare
Resource Utilization (emergency room visits, hospitalizations, physician-office visits,
etc.)

• Pharmacy Claims data: NDC code (11 digit), Fill date, Days’ supply, Insurer-reported
costs

The Komodo Healthcare claims data is collected and aggregated by Komodo Health.

3.3. Linked Data

With recent advances in record linkage algorithms (Datavant, August,2019) (Datavant,
October,2019) record linkage of two data sources is now possible with high rates of accuracy.
The third-party record linkage algorithm used in this work uses a combination of tokens,
one built from the combination of the first initial of the first name, last name, date of birth,
and gender and a second token built from the combination of the soundex of first and last
name, date of birth, and gender allows a matching accuracy of 98.9% with a false positive
rate of only 1.1%. Figure 1 shows an illustration of the creation of the linked data from
the NHWS and Komodo claims data. One of the challenges of the linked data set is that
it is significantly smaller than both the original data sources. If the linked data provides
sufficient sample size for the research question of interest, then one can proceed using it
to investigate the question. In this paper, we discuss a potential solution through data
fusion where the linked data set does not provide a sufficient enough sample size to draw
meaningful inferences.
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First Name Last Name Date of Birth Gender Other NHWS variables 

A K 1/1/40 M
B L 2/2/60 F
C M 3/3/50 M
D N 4/4/80 M
E O 5/5/70 F
F P 6/6/90 F
G Q 7/7/50 M

First Name Last Name Date of Birth Gender Other Komodo variables 

A K 1/1/40 M
D N 4/4/80 M
E O 5/5/70 F
F P 6/6/90 F
H R 8/8/50 M
I S 7/7/40 F
J T 8/8/80 F

First Name Last Name Date of Birth Gender Other NHWS variables Other Komodo variables 

A K 1/1/40 M
D N 4/4/80 M
E O 5/5/70 F
F P 6/6/90 F

NHWS Claims Data

Linked Data 

Figure 1: Illustration of Linked Data

4. Method

4.1. Background and Notation

Let D be a data set with nD independent and identically distributed (i.i.d) observations on
variables (XD,ZD) and R be a data set with nR i.i.d observations on variables (XR,YR)
with nD >> nR. The superscripts denote the source data set. X, Y, and Z are vectors of
random variables of dimensions px, py, and pz respectively. ZD is observed only in D and
YR is observed only in R. X is observed in both the data sets or at the very least can be
transformed so as to make their definitions consistent across the two data sets. Typically,
data sets D and R do not have any patients in common or at least is unknown to the
analyst, and the objective of data fusion or the statistical matching problem is to fuse D
and R to create a synthetic data set with variables (XR,YR,ZR∗) to gain insights on the
joint distribution of the random variable (X,Y,Z) with some density function f(x,y, z).
The asterisk is used to indicate that the variables ZR∗ are not observed in the data set R
but are fused or imputed into it. In this setting, the data sets D and R are called the donor
and the recipient data sets respectively.

The statistical matching problem is characterized by the fact that there are no observa-
tions where all the variables (X,Y,Z) are jointly observed. As a result, only a few models
are identifiable for the fused data among all the possible models for (X,Y,Z) i.e. the fused
data does not contain enough information for the estimation of parameters such as the
correlation matrix or to test if a given model is appropriate for (X,Y,Z). In the absence of
any further additional information, a common assumption under which statistical matching
problem becomes identifiable for (X,Y,Z) is the Conditional Independence Assumption
(CIA). Under CIA, the density function for (X,Y,Z) is given by
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f(x,y, z) = fY|X(y|x) fZ|X(z|x) fX(x) (1)

i.e. Y and Z are independent given X. In order to estimate the density function given
by equation 1, one can estimate fX(x) using both D and R, the conditional distribution
fY|X(y|x) using R and the conditional distribution fZ|X(z|x) using D. The CIA is a strong
assumption that cannot be tested on the fused data and is more often than not an incorrect
assumption, especially in healthcare analytical settings. Violation of this assumption can
introduce serious bias in the estimates of f(x,y, z) or f(y, z) (D’Orazio et al., 2006). One
common approach to avoiding the CIA, is the use of auxiliary information on (X,Y,Z) or
(Y,Z), usually from a third data set generated from f(x,y, z) (Kadane, 1978; Singh et al.,
1993; D’Orazio et al., 2006).

One such data set providing auxiliary information on (X,Y,Z) is the linked data set L
obtained from D and R as described in section 3.3. Application of such a record linkage
algorithm on data sets D and R creates a linked data set L with nL i.i.d observations
on variables (XL,YL,ZL). The existence of the linked data set L solves the challenges
encountered in a typical data fusion problem:

1. The CIA no longer needs to be imposed on the matching problem as the linked data
set L provides the auxiliary information on (X,Y,Z).

2. Typical auxiliary information data may not be perfect in the sense the the data
available may be outdated with respect to the recipient and/or donor data sets, or
the definitions of the variables may not be completely consistent across the data sets.
The auxiliary information provided by the linked data set L does not suffer from such
issues as (XL,ZL) ⊂ (XD,ZD) and (XL,YL) ⊂ (XR,YR).

With the availability of a linked data set L of sufficient sample size, for some research
questions of interest, one would not need data fusion for further analysis. The problem is
that the linked data set is usually orders of magnitude smaller than both the donor and
recipient data sets i.e. nD >> nR >> nL. This gives rise to two specific challenges in
health care analytics:

1. The number of patients for rare diseases in a linked data set can be prohibitively
small, i.e. no meaningful insights can be gained from such a small data set.

2. For common diseases, the specificity of the research question can lead to cohorts in
the linked data that are very small. For example one might be interested in a certain
common disease but the inclusion criteria might include certain comorbidities and/or
the use of certain classes of treatment. So, even though the number of patients for the
disease might be large enough, the number of patients satisfying the inclusion criteria
might be very small.

For both of the above scenarios, the recipient data R typically has a large enough number
of patients that satisfy the inclusion criteria, but lack the variable (Z) for analysis. In
the following sections we describe a data fusion methodology using the linked data set (L)
providing the auxiliary information.
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4.2. Data Fusion using Linked Data

Given data sets D, R, and L, the objective is to impute the variable (Z) for data set R.
In this work, we focus on (Z) being a continuous multivariate variable, but the methods
proposed can be implemented for multivariate outcomes of mixed types. We follow the
mixed method approach to data fusion reviewed in (D’Orazio et al., 2006) which consists
of two steps:

1. Model parameter estimation: Estimation of the parameters for the prediction model
corresponding to the regression of (Z) on (X,Y). Different approaches to estimating
these regression parameters have been proposed (Moriarity and Scheuren, 2001; Rubin,
1986; Rässler, 2012; Moriarity and Scheuren, 2010). These methods assume (X,Y,Z)
to be multivariate normal. (D’Orazio et al., 2006) discuss methods where (X,Y,Z) is
multinomial. (D’Orazio, 2011) approach the prediction model using Classification and
Regression Trees (CART)(Breiman et al., 1984) and random forest (Breiman, 2001).
In the following section we discuss the prediction modeling of (Z) given (X,Y) using
artificial neural networks (ANN). This relaxes the multivariate normal assumption on
(X,Y,Z) and also allows for multivariate outcomes of mixed types.

2. Statistical Matching: Use of hot deck techniques, nonparametric imputation tech-
niques that fill missing values with observed (live) ones with respect to some metric,
conditional on the first step. With continuous variables, a common class of techniques
is based on predictive mean matching (Little, 1988; Rubin, 2004).

The details of the above steps in our proposed methodology are discussed below.

4.2.1. Step 1: Model parameter estimation

We model the outcome(s) (Z) given (X,Y) using the linked data set L. Here we assume (Z)
as a pz dimensional continuous outcome. We propose an artificial neural network (ANN)
model ML(·) to model (Z) given (X,Y). One of the many advantages of an ANN is its
ability to capture non-linear interactions among the variables and also to model multivariate
outcomes (possibly of different types). Details of the ANN model and features used in the
model are described in section 5.

Let M̂L(·) denote the fitted ANN model using the data set L and ẑR = M̂L((xR,yR))
denote the pz dimensional vector of predicted values of (Z) given (X,Y) for an observation

in data set R . Let εL = zL − ẑL denote the residuals from the model fit and εLi =
σ̂(xL

i ,y
L
i ) · ηi where ηi are the standardized residuals with E(ηi) = 0 and V ar(ηi) = 1 and

σ̂(xL
i ,y

L
i ) is the conditional standard deviation of εLi given (xi,yi), i.e., we do not make any

distributional assumptions on the model error and allow for heteroskedasticity by estimating
the conditional standard deviation by choosing the residuals conditional on the covariate
characteristics.

4.2.2. Step 2: Distance Hot Deck Matching

In this second step we impute the value ZR∗ for the data set R from the donor data set D
using predictive mean matching via random distance hot deck matching.
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1. Predict the variable (Z) for data set R i.e. ẑRi = M̂L((xR
i ,y

R
i )) for i = 1, . . . , nR in

the recipient data

2. Resample the standardized residuals ηi defined above with replacement and denote it
by η̃1, . . . , η̃nR

3. Stochastic regression imputation, where a residual that reflects uncertainty in the
predicted value is added to the predicted value from the model i.e. add the resampled

error to the predicted value i.e. set z̃Ri = ẑRi + σ̂(xR
i ,y

R
i ) η̃i.

4. Compute the distance di,j((x
R
i , z̃

R
i ), (xD

j , z
D
j )) between z̃Ri , i = 1, . . . , nR and zDj , j =

1, . . . nD in the donor data where xR
i and xD

j correspond to the common variables
(X) in the donor and recipient data sets. If (X) is comprised of continuous and
categorical variables, the continuous variables are included as part of the distance
calculation while the categorical variables become donor classes i.e. distances are
computed between the donor and recipient data sets only within the strata defined
by the donor classes. For example, if gender is a categorical variable common to both
the donor and recipient data sets, then distances are computed only within males and
females and not across genders. Here, we use the Mahalanobis distance metric which
takes into account the statistical relationship between the variables given by

di,j(wi,wj) = (wi −wj)
′
Σ−1WW(wi −wj) (2)

where ΣWW is the covariance matrix of W = (X,Z) and can be estimated using the
donor data set.

5. For each i = 1, . . . , nR, choose the 5 closest values in D based on the distance di,j and
randomly sample one value from these 5 closest values. let the value of k be denoted
by k∗ (Andridge and Little, 2010)

6. Set the imputed value zR∗i = zDk∗

The above steps provide a single imputation of the fused data for the recipient data set. In
single imputation, a missing value is replaced by a single imputed value and then treated
as if it were a true value. As a result, single imputation ignores uncertainty inherent
in the imputation and almost always underestimates the variance. Multiple imputation
overcomes this problem by taking into account both within-imputation uncertainty and
between-imputation uncertainty. To analyse the fused data and draw appropriate inferences,
we will embed the above procedure within a multiple imputation framework.

4.3. Multiple Imputation

To account for the uncertainty in the imputation model, we propose the bootstrap based
multiple imputation procedure (Van Buuren, 2018). Let m be the number of multiple
imputations desired (in this work we use m = 5).

1. Step 1: Fit m bootstrap models

(a) From the observed data set L, generate m bootstrap samples B(i), i = 1, . . . ,m
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(b) To each of the bootstrapped data, fit the ANN model described in section 4.2.1

M̂B(i)
(·), i = 1, . . . ,m

2. Step 2: Using each bootstrap based model, M̂B(i)
(·), i = 1, . . . ,m , generated a fused

data set as described in section 4.2.2

In these m multiply-imputed fused data sets, all of the observed values are identical, but
the imputed values are different, reflecting the uncertainty in imputation. One can then
conduct standard statistical analysis, separately using each of the m multiply-imputed data
sets and pool the results of the m statistical analyses to obtain the pooled point estimate
and associated variance as described in (Van Buuren, 2018; van Buuren and Groothuis-
Oudshoorn, 2011)

4.4. Matching Noise and Sample Size

As will be discussed in detail in section 6.1, the goal of data fusion is typically not to make
sense of the individual value imputed to a patient but to gain insights based on the aggregate
of the imputed values. Consider the fused variable (univariate) F and the corresponding
unobserved true value T then

F = T + δ (3)

where δ is the matching noise which is the discrepancy between the true and the imputed
value. Let µ̂F be the mean and σ̂F

2 be the variance obtained from the fused data F based
on a sample of size n. Assuming T and δ are independent, the margin of error (MoE) of
µ̂F corresponding to a 95% confidence interval is

MoE = 1.96
σ̂F√
n

(4)

= 1.96

√
σ̂T

2 + σ̂δ
2

√
n

(5)

In a typical data fusion setting, T is not observed in the recipient data and thus δ cannot
be computed. But here, using the validation data set, where T is observed, we can estimate
the quantity in equation (5) by choosing a subset of the data from the validation set that
are similar to the recipient data based on (X,Y). The minimum sample size required for
the given margin of error can be given by

Nmin >

(
1.96

√
σ̂T

2 + σ̂δ
2

MoE

)2

(6)

By using the estimates from the validation set, we can estimate the minimum sample size
required for the fused data to make reasonable inferences. The available information may
be used for more sample size calculations for complicated analysis when appropriate.

5. Outcomes, Features, and the ANN Model

In this section we describe the development of the ANN model ML(·) using the linked data
L.

The outcomes considered for fusion from the linked data are the following PROs
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1. The SF-36v2 (Ware et al., 2000) is a multipurpose, generic health status instrument
comprising 36 questions. These items map onto eight health domains: physical func-
tioning, physical role limitations, bodily pain, general health, vitality, social function-
ing, emotional role limitations, and mental health. In this work we will analyse the
two component summary scores

(a) MCS: Mental Component Summary Score (MCS), ranging between 0 and 100

(b) PCS: Physical Component Summary Score (PCS), ranging between 0 and 100

2. EQ5D: The EQ-5D-5L (Herdman et al., 2011), developed by the EuroQol Research
foundation, is a widely-used survey instrument for measuring preferences for health
states and one of several such instruments that can be used to determine the quality-
adjusted life years associated with a health state. It measures health related quality
of life in five dimensions. The EQ5D scores ranges between 0 and 1.

3. SF-6D: The items from the SF-36v2 are also used to derive a preference-based health
utility index to be used for health economic assessment. Using the SF-6D (Bra-
zier et al., 2002) classification system, the response pattern of the SF-36v2 items is
converted to a health utility score, which conceptually varies from 0 (a health state
equivalent to death) to 1 (a health state equivalent to perfect health).

The input variables in the linked data set consist of those variables that are present for
most patients in the recipient data set. These variables can be grouped into four categories:

1. Demographic: Age (at the time of the survey), gender

2. Diagnoses: Diseases and comorbidities identified by ICD-9 and ICD-10 codes. The
diseases and comorbidities were grouped into meaningful clinical groups using the
Healthcare Cost and Utilization Project (HCUP) (HCUP, 2020) databases to make
the input less sparse. The diagnoses were further classified as chronic and acute
conditions using the HCUP classification. All chronic conditions prior to the survey
date were considered as input. Only the those acute conditions that occurred within
a year prior to the survey date were considered.

3. Procedures: Medical procedures identified by CPT and HCPCS codes. The proce-
dures were grouped into meaningful clinical groups using HCUP databases to make
the input less sparse. Only procedures within a year prior to the survey date were
considered.

4. Treatments: Treatments identified by NDC codes were grouped into their Anatomic
Therapeutic Chemical (ATC) classification using the Observational Health Data Sci-
ences and Informatics (OHDSI) (OHDSI, 2020) database. Only treatments within a
year prior to the survey date were considered.

Apart from age, all other input variables are binary - gender (1 = female, 0 = male)
and all other variables indicate the presence (1) or absence (0) of the disease, comorbidity,
procedure, or treatment. There were a total of 104,132 patients in the linked data sample.
The patients were divided into training set (N = 78,099, 80%), validation set (N = 20,826,
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Figure 2: Illustration of Prediction Model using Artificial Neural Networks for Data Fusion

20%) and a test set (N=5,207, 5%). The training data set was fed into an single layer
artificial neural network model illustrated in figure 2. The number of input nodes were
1,806 corresponding to the various input variables described above. The number of output
nodes were 4 corresponding to the 4 outcomes. The final model had 15 nodes in the single
hidden layer in the model. The output nodes had linear activation functions and the nodes
in the hidden layer had rectified linear-unit (ReLU) activation functions. A dropout rate of
50% was used in the hidden layer with L1 and L2 regularization parameters of 0.003 and
0.002 respectively. Early stoppage was used to avoid over-fitting of the model. The loss
function used was the mean square error for all the output nodes. The schematic of the
data processing and model fitting is shown in figure 2. The ANN model was fit using Keras
(Chollet et al., 2015).

6. Results on Real Data

In this section we will assess the performance of the proposed data fusion methodology
using the test data set of 5,207 observations. The random distance hot-deck matching was
implemented using the R package StatMatch (D’Orazio, 2019).

The CIA based method could perform well due to sheer chance that the conditional
independence assumption happened to be satisfied. As stated earlier this is an assumption
that cannot be tested. Further, the use of CIA based methods due to the lack of auxilliary
data, usually results in two data sets that might not have a significant overlap of fetaures.
For example, in the data sets used in this study, the feature set will be restricted to diagnosis,
procedures and treatments explicitly posed in the survey. This feature set will be far
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less than that obtained from the auxilliary linked data set. For this reason, we restrict
our evaluation to the methodology proposed in this work by comparing the analysis from
the fused data to the true observed data. Comparisons between those based on CIA and
auxilliary data methods can be found in (D’Orazio et al., 2006; Rässler, 2004).

6.1. Evaluation Approach

The objective of data fusion is to combine two different data sets with complementary
variables and gain insights or make inferences identical to what would have been made using
a single data set with all the relevant variables. In that sense, we assess the performance
of the proposed fusion methodology using the test set of 5,207 patients and compare the
results from the fused data to the results from the observed data. (Rässler, 2004) distinguish
between four levels of validity of a fusion procedure:

1. Level 1 - Preserving Individual Values: The individual values are preserved when the
true but unknown values of the variable of the recipient units are reproduced

2. Level 2 - Preserving Joint Distributions: The joint distribution is preserved after data
fusion when the true joint distribution of all variables is reflected in the fused file

3. Level 3 - Preserving Correlation Structures: The correlation structure and higher
moments of the variables and the the marginal distributions are preserved after data
fusion.

4. Level 4 - Preserving Marginal Distributions: After data fusion, at least, the marginal
and joint distributions of the variables in the donor sample are preserved in the fused
file

Data fusion is said to be successful if the marginal and joint empirical distributions as they
are observed in the donor sample, are “nearly” the same in the fused file (Rässler, 2004). In
that sense, in the following sections we explore the performance across some typical analysis

1. Univariate analysis: Compare means between observed and fused outcomes for differ-
ent cohorts

2. Bivariate analysis: Compare means between observed and fused outcomes by different
levels of a given categorical variable. For a given continuous variable, the correlation
between the continuous variable and observed/fused outcomes are compared. Corre-
lation are also computed and compared between outcomes.

3. Multivariate analysis: Linear regression is performed with observed and fused out-
comes and we compare the coefficients and inferences drawn from the analysis.

For each of the analysis above we provide the estimates of the mean and standard errors
estimated from the observed and fused data, and δ̂ and σ̂δ, the estimated mean and asso-
ciated standard error of the difference δ between the estimates from the observed and the
fused data. Further, we provide the following:
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1. P-value: The p-value corresponding to the test of the null hypothesis

H0 : δ = 0 (7)

In this work we infer that the estimated difference δ̂ is not statistically different from
zero if P-value is greater than 0.05.

2. Pmcid: Differences in PROs are typically assessed based on the Minimum Clinically
Important Difference (MCID). The differences between PROs are meaningful only if
they are greater than the MCID. The MCID is defined for a particular PRO and
might also be different across disease conditions. We define Pmcid as the probability
that δ < −MCID or δ > MCID given the estimates δ̂ and σ̂δ. We compute Pmcid as

Pmcid = Φ(zmcid−) + 1− Φ(zmcid+) (8)

where zmcid+ = MCID−µ̂
σ̂ , zmcid− = −MCID−µ̂

σ̂ , and Φ(·) is the cumulative distribution
function of the standard normal distribution. One might fail to reject the null hy-
pothesis of no difference above indicating that estimates from the observed and fused
data are not statistically different. But this could just be due to a large standard
error. This is not very beneficial if Pmcid happens to be large indicating that δ could
be greater then MCID. We typically want Pmcid to be small and in this work to be
less than 0.05. The MCID for the PROs in this work are: MCS - 3 (for Drugs and
in Health, 2017), PCS: - 2 (for Drugs and in Health, 2017), EQ5D - 0.18 (Briggs et al.,
2017), and SF6D - 0.033 (Walters and Brazier, 2003).

3. Nmin: We provide the minimum sample size required to make meaningful inferences
using the fused data. The minimum sample size for each PRO is computed using
equation (6) with the margin of error MoE set to their respective MCID.

We reiterate that the the goal of data fusion is to be able to perform meaningful analysis
at the population level. In fact, one is advised against using the fused data to make
inferences at the individual/patient level.

6.2. Univariate Analysis: General (non-disease specific) cohort

Table 1 shows the observed and fused sample means for the PROs and their differences for
the general (non-disease specific) test sample. The differences in means are below 0.2 in
absolute value and we fail to reject the hypothesis of no difference across all the PROs. As
the sample sizes N are much larger than Nmin, the estimates are precise enough such that
the probability that the error is greater than MCID is almost zero.

6.3. Univariate Analysis: Disease Specific cohort

As described in section 4, although the model development is disease agnostic, most research
questions of interest are disease specific. Tables 2 and 3 correspond to results from Type-2
Diabetes (ICD10: E11.XX) and Myasthenia Gravis (ICD10: G70.00 and G70.01) (a rare
disease) test samples respectively. In table 2 for Type-2 diabetes, the differences in means
are below 0.5 in absolute value and we fail to reject the hypothesis of no difference across
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Observed Fused Difference

PRO MCID Nmin N Mean SE Mean SE Mean SE P-value Pmcid

MCS 3.000 232 5207 48.11 0.158 48.31 0.422 -0.202 0.442 0.656 < 0.001
PCS 2.000 386 5207 50.18 0.132 50.17 0.251 0.008 0.278 0.977 < 0.001
EQ5D 0.180 13 5207 0.82 0.002 0.82 0.004 0.003 0.005 0.448 < 0.001
SF6D 0.033 292 5207 0.73 0.002 0.73 0.004 -0.003 0.004 0.494 < 0.001

Table 1: General (non-disease specific) test sample

Observed Fused Difference

PRO MCID Nmin N Mean SE Mean SE Mean SE P-value Pmcid

MCS 3.000 225 883 49.73 0.369 50.00 0.928 -0.270 0.976 0.786 0.003
PCS 2.000 487 883 45.78 0.351 46.13 0.666 -0.352 0.741 0.636 0.014
EQ5D 0.180 14 883 0.79 0.005 0.79 0.010 0.002 0.011 0.860 < 0.001
SF6D 0.033 299 883 0.71 0.005 0.72 0.009 -0.009 0.010 0.367 0.011

Table 2: Type-2 Diabetes test sample

all the PROs. As the sample sizes are well above the required minimum, the Pmcid values
are small. The results from Myasthenia Gravis test sample in table 3 are very similar. Here
again we fail to reject the null hypothesis of no difference but as the sample sizes are just
about equal or lower than the required minimum, the probability of the difference being
greater than MCID are higher except in EQ5D where the sample size is greater than the
required minimum. With a larger sample size, one should expect these probabilities to drop
as seen in in the general and type-2 diabetes cases.

As one is mostly interested in disease specific cases and due to sample size requirements,
for the remainder of this section we will focus on the type-2 diabetes test data set to assess
data fusion.

6.4. Bivariate Analysis I

In this section, we assess the performance of the data fusion procedure for subgroups of the
data. Here we present subgroup analysis by age and gender. Tables 4 and 5 show the results
for the gender and age subgroup analysis. As in 6.3 we fail to reject the null hypothesis
of no difference in all cases. For the analysis by gender, the differences are less the 0.5 in
absolute value across all cases and Pmcid is less than 0.1 except when the sample size is
smaller than the minimum required. For the analysis by age groups, the difference is less
than 1 in absolute value when the sample size is greater than the minimum required and
Pmcid is less than 0.1 except when the sample size is smaller than the minimum required.
This suggests that one should appropriately pool subgroups such that the subgroups meet
at least the minimum sample size requirement for making reasonable inferences.

6.5. Bivariate Analysis II

In section 6.4, the subgroup analysis was performed on gender and age groups, both of
which were explicitly used both as inputs in the predictive model developed in section 4
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Observed Fused Difference

PRO MCID Nmin N Mean SE Mean SE Mean SE P-value Pmcid

MCS 3.000 150 100 48.09 1.172 49.64 1.612 -1.543 1.923 0.432 0.233
PCS 2.000 370 100 42.81 1.132 42.76 1.675 0.042 1.948 0.983 0.305
EQ5D 0.180 13 100 0.76 0.017 0.74 0.024 0.021 0.029 0.471 < 0.001
SF6D 0.033 194 100 0.68 0.015 0.69 0.016 -0.007 0.020 0.739 0.122

Table 3: Myasthenia Gravis test sample

Observed Fused Difference

PRO MCID Nmin N Mean SE Mean SE Mean SE P-value Pmcid

Male
MCS 3.000 225 409 50.45 0.517 50.66 1.359 -0.210 1.430 0.886 0.038
PCS 2.000 487 409 47.46 0.466 47.66 1.348 -0.202 1.421 0.889 0.163
EQ5D 0.180 14 409 0.81 0.007 0.80 0.017 0.010 0.018 0.603 < 0.001
SF6D 0.033 299 409 0.73 0.006 0.73 0.018 -0.006 0.019 0.760 0.095

Female
MCS 3.000 225 474 49.11 0.522 49.44 1.027 -0.321 1.108 0.773 0.009
PCS 2.000 487 474 44.33 0.506 44.81 0.887 -0.481 1.003 0.632 0.072
EQ5D 0.180 14 474 0.77 0.008 0.78 0.015 -0.005 0.016 0.773 < 0.001
SF6D 0.033 299 474 0.69 0.006 0.70 0.012 -0.012 0.013 0.350 0.060

Table 4: Type-2 Diabetes: Subgroup analysis by gender

and also as a component in the distance calculation (age) or as a donor class (gender) in
the matching process. In this section we perform subgroup analysis by the presence and
severity of Chronic Kidney Disease (CKD), which is implicitly included in the ANN model.
The ICD10 codes for Chronic Kidney Disease are as follows -

• N18.1 Chronic kidney disease, stage 1

• N18.2 Chronic kidney disease, stage 2 (mild)

• N18.3 Chronic kidney disease, stage 3 (moderate)

• N18.4 Chronic kidney disease, stage 4 (severe)

• N18.5 Chronic kidney disease, stage 5

• N18.6 End stage renal disease

• N18.9 Chronic kidney disease, unspecified

These ICD codes along with other certain related procedures are grouped into a single
clinically meaningful class (identified as GEN003) in the HCUP classification. It is the
presence or absence of CKD as identified by GEN003 that is entered in into the ANN
model along with other information for a given patient. Here we explore the subgroup
analysis on the different severities/stages of CKD which were implicitly entered into the
model through the clinical grouping variable GEN003. Table 6 shows the results for various
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Observed Fused Difference

PRO MCID Nmin N Mean SE Mean SE Mean SE P-value Pmcid

18 - 44
MCS 3.000 225 83 43.69 1.205 42.32 3.148 1.366 3.331 0.690 0.407
PCS 2.000 487 83 47.60 1.128 48.51 2.066 -0.911 2.308 0.695 0.422
EQ5D 0.180 14 83 0.80 0.019 0.76 0.041 0.035 0.044 0.438 0.001
SF6D 0.033 299 83 0.67 0.016 0.67 0.030 0.000 0.033 1.000 0.315

45 - 64
MCS 3.000 225 366 47.67 0.610 47.73 1.538 -0.058 1.634 0.972 0.066
PCS 2.000 487 366 45.89 0.562 45.93 1.061 -0.041 1.176 0.972 0.089
EQ5D 0.180 14 366 0.77 0.009 0.77 0.018 0.000 0.019 0.987 < 0.001
SF6D 0.033 299 366 0.70 0.007 0.70 0.015 0.001 0.016 0.955 0.040

65 - 79
MCS 3.000 225 381 52.63 0.489 53.44 1.248 -0.810 1.330 0.550 0.052
PCS 2.000 487 381 45.20 0.522 45.93 1.152 -0.721 1.256 0.570 0.169
EQ5D 0.180 14 381 0.81 0.007 0.81 0.019 -0.002 0.021 0.909 < 0.001
SF6D 0.033 299 381 0.72 0.006 0.74 0.015 -0.022 0.016 0.193 0.239

80 +
MCS 3.000 225 53 52.58 1.161 52.99 2.406 -0.413 2.679 0.878 0.268
PCS 2.000 487 53 46.35 1.359 45.32 3.470 1.030 3.670 0.786 0.600
EQ5D 0.180 14 53 0.81 0.018 0.82 0.038 -0.008 0.042 0.851 < 0.001
SF6D 0.033 299 53 0.73 0.018 0.74 0.035 -0.008 0.038 0.835 0.402

Table 5: Type-2 Diabetes: Subgroup analysis by age

stages/severity of CKD for EQ5D (we restrict the analysis to EQ5D as the sample size is
greater than the minimum required Nmin = 14). We see that the differences are less than
or equal to 0.05 in almost all cases with Pmcid is less than 0.05 except where the sample
size are barely more than the minimum required.

Observed Fused Difference

EQ5D (Nmin = 14, MCID = 0.18) N Mean SE Mean SE Mean SE P-value Pmcid

No Chronic Kidney Disease 736 0.79 0.006 0.79 0.011 0.002 0.012 0.852 < 0.001
CKD Unspecified 22 0.80 0.021 0.76 0.119 0.041 0.120 0.753 0.156
Stage-1 or Stage-2 (mild) 22 0.82 0.020 0.82 0.065 0.003 0.064 0.965 0.005
Stage-3 (moderate) 75 0.78 0.020 0.81 0.038 -0.030 0.043 0.490 < 0.001
Stage-4 (severe) or Stage-5 14 0.82 0.023 0.78 0.060 0.043 0.064 0.516 0.017
End stage renal disease 14 0.79 0.043 0.74 0.091 0.053 0.104 0.631 0.122

Table 6: Type-2 Diabetes: EQ5D - Subgroup analysis for Chronic Kidney Disease

6.6. Correlation

In this section we compare the correlation estimates from observed and fused data. The
correlation from multiple imputed data sets and associated confidence intervals were ob-
tained as implemented in (Robitzsch and Grund, 2019). Table 7 compares the correlation
between the PROs and the independent variable age. The difference between observed and
fusion based estimates is less the 0.05 and the 95% confidence intervals from the fused data
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includes the observed estimate. Except in the case of MCS where the difference is slightly
larger and less than 0.1 and the confidence intervals barely miss the observed point estimate.

Observed Fused

PRO Variable ρ LL UL ρ LL UL

MCS Age 0.30 0.23 0.36 0.19 0.12 0.26
PCS Age -0.07 -0.14 0.00 -0.03 -0.13 0.06
EQ5D Age 0.07 0.01 0.14 0.07 -0.03 0.16
SF6D Age 0.12 0.05 0.19 0.11 0.03 0.19

Table 7: Type-2 Diabetes: Correlation between PROs and Age. Estimates ρ and associated
lower (LL) and upper (UL) 95% confidence intervals

Table 8 shows the comparison of the correlation between PROs i.e. between outcomes
in the observed and fused data. The table provides the estimate of the correlation and
the 95% confidence intervals. The correlation from the fused data are either identical to
the correlation from the observed data or at least within the range of the 95% confidence
intervals from the observed data estimates.

Observed Fused

PRO-1 PRO-2 ρ LL UL ρ LL UL

MCS EQ5D 0.55 0.50 0.61 0.49 0.43 0.55
MCS PCS 0.20 0.14 0.27 0.20 0.11 0.27
MCS SF6D 0.71 0.66 0.76 0.71 0.66 0.75
PCS EQ5D 0.68 0.63 0.73 0.68 0.64 0.72
PCS SF6D 0.71 0.67 0.76 0.71 0.64 0.76
EQ5D SF6D 0.75 0.70 0.79 0.71 0.67 0.75

Table 8: Correlation between PROs. Estimates ρ and associated lower (LL) and upper
(UL) 95% confidence intervals

6.7. Multivariate Analysis

In this section we compare results between the observed and fused data in a multivariate
setting, more specifically in linear regression. Due to sample size constraints in the test set
as seen above, we restrict the independent variables in the regression to gender and age.
Age is dichotomized as less than or greater than or equal to 65 years. Table 9 shows the
results from the regression analysis for the 4 PROs (outcomes).

The table provides the estimate, standard error and p-value from the observed and
fused data. The table also provides the estimate of the difference δ between the observed
and fused estimates and the associated standard error along with Pmcid as defined above.
The difference in the intercepts (average PRO value for a male under the age of 65) and
the coefficient corresponding to gender (the difference between females and males within
a given age group) are less than 0.5 in absolute value across all outcomes. The coefficient
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Observed Fused Difference

Coefficient Estimate SE P-value Estimate SE P-value Estimate SE Pmcid

MCS
Intercept 47.437 0.649 0.000 47.122 1.642 0.000 0.316 1.765 0.094
Gender (Female) -0.872 0.718 0.225 -0.681 1.485 0.650 -0.192 1.650 0.071
Age (>= 65) 5.620 0.716 0.000 6.603 1.610 0.001 -0.983 1.762 0.138

PCS
Intercept 48.061 0.631 0.000 48.086 1.289 0.000 -0.026 1.436 0.164
Gender (Female) -3.220 0.698 0.000 -2.915 1.770 0.124 -0.305 1.902 0.299
Age (>= 65) -1.121 0.696 0.108 -0.791 1.669 0.642 -0.330 1.808 0.277

EQ5D
Intercept 0.799 0.009 0.000 0.783 0.018 0.000 0.016 0.021 < 0.001
Gender (Female) -0.037 0.010 0.000 -0.021 0.025 0.399 -0.015 0.027 < 0.001
Age (>= 65) 0.028 0.010 0.007 0.039 0.028 0.198 -0.011 0.030 < 0.001

SF6D
Intercept 0.713 0.008 0.000 0.707 0.016 0.000 0.006 0.018 0.082
Gender (Female) -0.034 0.009 0.000 -0.026 0.023 0.282 -0.008 0.025 0.209
Age (>= 65) 0.026 0.009 0.005 0.047 0.019 0.017 -0.021 0.021 0.289

Table 9: Type-2 Diabetes: Multivariate Analysis

corresponding to age (difference between the two age groups within a given gender) is less
than 1 in absolute value across all outcomes. The Pmcid is least in EQ5D as the available
sample is far greater than the minimum required as seen above. This shows that the when
the sample size exceeds the minimum required, estimates reasonably close to that from what
would have been observed can be obtained. As expected, the standard errors of the estimates
from the fused data are larger than those from the observed data and the thus the p-values
are larger than those observed in the analysis of the observed data. This necessitates a larger
sample size in a multivariate setting. Recent methodological advances such as (Evans et al.,
2018) have developed a general class of semiparametric parallel inverse probability weighting
estimating functions, whose resulting estimators are consistent if the outcome regression
and data source process are correctly specified. This general class of estimating functions
includes a large set of doubly robust estimating functions which additionally require a model
for the covariates that are missing. An estimator in this class is doubly robust in that it is
consistent and asymptotic normal if we correctly specify a model for either the data source
process or the distribution of unobserved covariates, but not necessarily both.

7. Discussion

In this paper we address sample size challenges encountered in linked data. While data link-
ing algorithms using patient identifiers have sufficiently advanced, producing false positive
rates of less than 1%, it can lead to data sets that are significantly smaller than their parent
data sets. This is especially true for studies involving rare diseases or studies investigating
very specific treatment cohorts for generic diseases. In such cases, the sample size of the
linked data for the cohort of interest can be too small to be able to draw any meaningful
inferences.
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We propose a solution based on data fusion, with the linked data acting as the auxiliary
data set. The advantages of using the linked data as the auxiliary data set are twofold -
(1) we do not have to impose the untestable and often unrealistic assumption of conditional
independence and (2) the input variables for the data fusion model come from the same
data source as the recipient data, thereby avoiding any concerns regarding consistency of
definitions or time-frame of data collection amongst others. An important contribution of
this work, is that we have shown the ability to implement data fusion in a disease agnostic
way thereby enabling the use of more advanced machine learning algorithms on larger data
sets, while still being able to use the resulting fused data to perform disease specific analysis.
This is in contrast to usual approaches where the data fusion might be attempted on disease
specific data sets which can be too small to be amenable to analysis by advanced methods.

Limitations A limitation of the approach is the sample size requirement for analysis
using fused data. The sample size required for analysis using fused data is typically larger
than that would be needed using observed data - how much larger this data set needs to
be depends on the matching noise of the fusion process. The larger the matching noise, the
larger the data set needs to be to draw meaningful insights from the fused data. This is
typically not an issue in large recipient data like the health insurance claims data, where
large number of patients are available for analysis. But this could be an issue for recipient
data sets that are small unless the matching noise in the imputation model is relatively
small.

Future Work The framework of the analysis, while theoretically is amenable to the
imputation of multivariate outcomes of mixed types, the objective of the future work is to
assess the performance of the proposed approach to such outcomes. For example - a vector
of outcomes comprising of PROs (continuous data), healthcare resource utilization (count
data or binary data), and cost related data (right tailed data). This could further enable the
usefulness of such methods for research questions arising in health economics and outcomes
research.
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