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Abstract

Rotator Cuff Tears (RCTs) are a common injury among people who are middle-aged or
older. For effective diagnosis of RCTs, orthopedic surgeons typically need to have access to
both shoulder Magnetic Resonance Imaging (MRI) and proton density-weighted imaging.
However, the generation and interpretation of such comprehensive image information is
labor intensive, and thus time consuming and costly. Although computer-aided diagno-
sis can help in mitigating the aforementioned issues, no computational tools are currently
available for diagnosing RCTs. Therefore, we introduce a computational approach towards
RCT diagnosis in this paper, leveraging end-to-end learning by applying a deep convolu-
tional neural network to shoulder MRI scans. Given that these shoulder MRI scans are
3-D by nature and highly biased towards normal shoulders, with only 6.6% of the available
shoulder MRI scans containing partial-thickness tears, we made use of two tools to enhance
our deep convolutional neural network. First, to enable the utilization of sequential infor-
mation available in the 3-D MRI scans, we integrated a weighted linear combination layer.
Second, to mitigate the presence of class imbalance, we adopted weighted cross-entropy
loss. That way, we were able to obtain a diagnostic accuracy of 87% and an M-AUC score
of 97%, outperforming a baseline of human annotators (diagnostic accuracy of 76% and an
M-AUC score of 81%). In addition, we were able to outperform several approaches using
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RCT diagnosis using deep learning

conventional machine learning techniques. Finally, to facilitate further research efforts and
ease of benchmarking, we make our dataset of 2,447 shoulder MRI scans publicly available.

1. Introduction

(a) Normal (b) Partial-thickness
tear

(c) Full-thickness tear

Figure 1: Anatomical comparison between a normal and a torn tendon, showing where
tears typically happen (in the blue circles) and the shape of these tears. If present, tears
can largely be divided into two classes, depending on severity: partial-thickness tears and
full-thickness tears.

Among patients suffering from shoulder pain, rotator cuff disorders are most frequently
implicated, being present in upto 86% of patients (Sharma et al., 2017). Specifically, Rotator
Cuff Tears (RCTs), which are particularly prevalent in patients who are middle-aged or
older (Kim et al., 2017), are the leading cause for shoulder surgery. Factors influencing
the success of rotator cuff repair include age, chronicity, tear size, and tear shape. An
illustration of different types of RCTs can be found in Figure 1.

To diagnose RCTs, orthopedic surgeons perform an examination by making use of Mag-
netic Resonance Imaging (MRI), leveraging T1- and T2-weighted sagittal, coronal, and
axial images, and proton density-weighted (PD-weighted) imaging. However, generating
and interpreting such comprehensive imaging information in support of medical decision
making requires a considerable amount of human labor. Furthermore, orthopedic surgeons
often still find it challenging to assess whether tears require surgical intervention.

The use of state-of-the-art deep learning approaches for Computer-Aided Diagnosis
(CAD) of brain, lung, and cardiac diseases is an active area of research and develop-
ment (Litjens et al., 2017). The resulting tools often come with a high diagnostic accuracy
and high Area Under the Curve (AUC) scores, also making it possible to reduce the amount
of time needed to examine medical images, thus facilitating more effective and faster deci-
sion taking by medical doctors. However, despite their significant impact on the quality of
life of patients, to the best of our knowledge, no computer-aided tools are currently available
for diagnosing RCTs. Therefore, in this study, we propose the first computational approach
towards RCT diagnosis, leveraging an end-to-end learning approach through a deep Con-
volutional Neural Network (CNN). Specifically, given that our shoulder MRI scans are (1)
3-D by nature and (2) highly biased towards normal shoulders (that is, shoulders without
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tears make up for 66% of the total number of MRI scans at our disposal), the proposed
approach uses, in combination with a deep CNN, a Weighted Linear Combination (WLC)
layer to take advantage of the available 3-D MRI information and weighted cross-entropy
loss in order to mitigate class imbalance issues.

Technical Significance As the first end-to-end CAD tool for RCT detection, our ap-
proach is able to take advantage of 3-D MRI information and to mitigate issues in terms of
class imbalance. In addition, we only make use of T2-weighted coronal images, minimizing
the amount of information necessary for performing a diagnosis, thus making the model
more efficient. Working with three classes (normal, partial-thickness, and full-thickness),
we obtained a diagnostic accuracy of 87% and an M-AUC score of 97%. To take into account
class imbalance, we also made use of Precision-Recall (PR) curves and confusion matrices.

Clinical Relevance In this study, we introduce a fully automated CAD tool to detect
RCTs in MRI scans, comparing the effectiveness of our predictive model to that of a hu-
man baseline. In the assumption that no shoulder-specialized surgeon or musculoskeletal-
specialized radiologist is available, the use of our tool is expected to improve the accuracy
of diagnosis when a general orthopedic surgeon is responsible for patient treatment, by for
instance preventing under-diagnosis of RCTs.

In summary, our major contributions are as follows:

• Using a deep CNN and a WLC layer, we propose the first end-to-end learning approach
for computer-aided diagnosis of RCTs, obtaining a diagnostic accuracy of 87% and
an M-AUC score of 97%.

• We extensively compare our approach against several baselines, including an approach
using human annotators and approaches based on traditional machine learning tech-
niques.

• There is currently no shoulder MRI dataset publicly available for research purposes.
By releasing our shoulder MRI dataset of 2,447 T2-weighted coronal scans, we hope
to facilitate further research efforts and ease of benchmarks.

Generalizable Insights about Machine Learning in the Context of Healthcare

Given the research effort presented in this paper, we can put forward three generalizable
insights into the use of machine learning in a healthcare context.

• A high class imbalance is an issue commonly associated with healthcare datasets.
Paying more attention to this issue when developing and using (deep) machine learning
approaches is expected to result in non-trivial diagnostic accuracy improvements.

• The increasing availability of computational approaches for determining disease sever-
ity is expected to contribute substantially to improved clinical decision taking.

• The need for developing effective and efficient (deep) machine learning approaches for
dealing with 3-D datasets of MRI or Computed Tomography (CT) images is expected
to become more prevalent, given that medical imaging equipment for generating 3-D
datasets is more and more commonly used in a hospital setting.
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The remainder of this paper is organized as follows. We review related work on MRI
datasets in Section 2. In Section 3, we describe the proposed approach in more detail.
We present our experimental setup and our experimental results in Section 4, also paying
attention to the characteristics of our dataset. Finally, in Section 5, we provide concluding
remarks, including a discussion of the limitations of our study. We also provide a number
of suggestions for future research.

2. Related Work

First, we briefly review a number of related research efforts that are mainly focusing on
MRI data analysis, with the aim of identifying candidate baseline techniques. Next, we
review a deep learning approach for analysis of musculoskeletal MRI data.

Machine learning for CAD in MRI began with brain disease diagnosis. Wang and Pham
(2011) introduced a machine learning model for brain age prediction, whereas Usman and
Rajpoot (2017) proposed the use of machine learning for brain tumor classification. Gu-
rusamy and Subramaniam (2017) presented a model for brain tumor segmentation and
classification, extracting features using the Discrete Wavelet Transform (DWT) and Princi-
pal Component Analysis (PCA), with PCA being explained in Abdi and Williams (2010).
Using a biological image classification package developed by Shamir et al. (2008), Ashinsky
et al. (2017) proposed a technique for osteoarthritis sign prediction using knee MRI. Note
that all of the aforementioned machine learning techniques make use of hand-crafted feature
extraction, given that raw images themselves typically contain too much information to be
processed by traditional machine learning approaches.

In the field of machine learning, deep learning has attracted substantial attention during
the past years. The use of deep learning has two distinct advantages over conventional
machine learning approaches. A first advantage is learnable feature extraction. Unlike
traditional machine learning using hand-crafted features, deep learning approaches define
and extract features from the data themselves. In other words, when large amounts of
labeled data are available, a deep learning model is able to find the optimal feature extraction
method by itself. A second advantage of deep learning is its high accuracy. When plenty
of data are available, deep learning approaches often surpass traditional machine learning
approaches in terms of effectiveness, especially in the area of visual content understanding.

In recent years, different types of medical image sets have been released and numerous
attempts have been made to gain insight into these medical image sets (see for instance the
survey presented in Litjens et al. (2017)). In the musculoskeletal field in particular, a large
number of knee MRI datasets have recently been made available for research purposes. Liu
et al. (2018) proposed a model for segmentation of knee cartilage lesions, using U-Net (which
is based on VGG-16) and 175 MRI slices. Roblot et al. (2019) conducted a study to find
and classify meniscus tears using Fast R-CNN and Faster R-CNN, leveraging 1,823 MRI
scans. Bien et al. (2018) presented MRNet, using a modified version of AlexNet in order to
classify anterior cruciate ligament tears, meniscal tears, and abnormalities, leveraging 1,370
3-D MRI scans.

On the other hand, in the shoulder musculoskeletal field, a relatively low number of
research efforts have thus far been pursued, mainly due to a lack of data. The authors
of Liu et al. (2019) introduced Mask R-CNN to distinguish a glenoid head and a humeral
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Figure 2: Augmented MRI scans of 16 slices (images) are used as an input. The final
convolutional layer of VGG-16 is followed by A Global Average Pooling (GAP) layer. The
output of this GAP layer is colored in blue. The weighted linear combination of the sixteen
output vectors generates a 512× 1 vector that has been colored in green.

head from other muscles in shoulder joint MRI. To that end, 50 sets of slices were used.
The authors of Conze et al. (2019) presented a U-Net-based model for shoulder muscle
segmentation. As an input, 24 pediatrics MRI series were used. Although the amount of
data is small, each muscle part is finely divided. Kim et al. (2019) presented a study that
is most similar to ours, analyzing a technique for detecting a fossa and muscle region using
an encoder-decoder model based on VGG-19. As an input, 240 sagittal MRI series were
used.

3. Method

In this section, we provide more details about the proposed approach, as shown in Figure 2.
In particular, Section 3.1 introduces the model we built on top of VGG-16. Next, Section 3.2
describes the Weighted Linear Combination layer used. Lastly, Section 3.3 discusses the
loss function and the optimization strategy used.

3.1. Embedding Function

One of the most effective approaches towards CAD is the use of convolutional neural net-
works. However, the latest high-performing CNNs are only able to take advantage of the
spatial information available in the input images. As a result, a straightforward applica-
tion of the aforementioned CNN-based models will not consider the sequential information
present in 3-D MRI scans. In this study, to obtain more reliable diagnostic outcomes, we
aim at leveraging both spatial and sequential tear information, given the observation that
tears typically do not occur in a single slice but throughout a range of slices in a partic-
ular MRI scan. However, given this observation, we can also point that not all slices in
an MRI scan are equally important. Therefore, as a first step towards effective RCT diag-
nosis, we employ a learnable weights layer after the last convolutional layer of a VGG-16
network (Simonyan and Zisserman, 2014).

Starting from a VGG-16 backbone, we built an embedding function for each slice in
an MRI scan. To construct this embedding function, we removed all of the FC layers
after the last convolutional layer of the VGG-16 backbone. By adding a Global Average
Pooling (GAP) layer to flatten the last features maps, we obtained 16 feature vectors of size
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(a) Network architecture (b) Weighted linear combination

Figure 3: Proposed network architecture, incorporating a Weighted Linear Combination
(WLC) layer. (a) Proposed simplified network architecture based on VGG-16. All the
convolutional (Conv) layers have 3 × 3 kernels, with the number of channels in [64, 128,
256, and 512]. The notation ×{no.} denotes the number of repetitions of each Conv layer.
Except for the last Conv layer (dotted), each Conv layer is followed by a max pooling layer.
Instead of the FC-[4096, 1000] layers in the original version of VGG-16, we used a GAP
layer and a WLC layer. (b) The weighted matrix multiplication performed by the last layer.

512× 1 per MRI scan, with each MRI scan containing 16 slices each. Dropout layers with
a dropout rate of 0.5 are added before and after the GAP layer in order to reduce model
overfitting. A visualization of our model can be found in Figure 3a. Upon availability of
more computational resources, the base model can have deeper layers than the ones we
used, so to enable an increase in diagnostic accuracy.

3.2. Weighted Linear Combination

Each output GAP (fθ(x)) is given as an input to a weighted linear combination gφ, with
θ and φ referring to weights. Using x to denote an MRI scan, then x ∈ R16×224×224×3.
Furthermore, fθ denotes the embedding function, consisting of the first 13 layers of VGG-
16. The Weighted Linear Combination (WLC) layer learns which slices are important
among all 16 slices available in an MRI scan by learning weights during training. As a
result, gφ can be defined as follows:

gφ(x) = GAP (fθ(x))T ·wφ. (1)

The output of Equation 1 has the shape of a 512× 1 feature vector. This feature vector is
then given as an input to the softmax function in order to generate a final RCT diagnosis.
This is also illustrated by Figure 3b.
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Table 1: Summarizing statistics for the shoulder MRI datasets used for training, validation,
and testing. The proportion of each class is approximately the same in each dataset.

Statistics Training Validation Testing

Total number of examinations (%) 1,963 (100) 242 (100) 242 (100)
- Normal examinations (%) 1,308 (66.6) 160 (66.1) 160 (66.1)
- Partial-thickness tear examinations (%) 125 (6.4) 16 (6.6) 16 (6.6)
- Full-thickness tear examinations (%) 530 (27.0) 66 (27.3) 66 (27.3)

Total number of patients 1,847 231 228
- Female patients (%) 942 (51) 115 (49) 134 (58)
- Mean age of patients (±std.) 56 (±14.8) 57 (±14.9) 56 (±14.6)

3.3. Weighted Cross-Entropy Loss and Optimization

During the learning of the weight parameters wφ, we calculate the loss by making use of
the weighted cross-entropy loss function, so to be able to alleviate class imbalance issues:

Lweighted = − 1

N

∑
i

αi · yi · log(ŷi), (2)

where αi is the weight assigned to class i, N is the number of classes used, yi is the
true class, and ŷi is the predicted class. The weights αi are inversely proportional to the
number of training examples available per class. Optimization was conducted by making
use of Adaptive Moment Estimation (Adam) (Kingma and Ba, 2014).

4. Experiments

4.1. Patient Cohort

For a total of 2,492 subjects, shoulder MRI scans were obtained at Chung-Ang University
Hospital in Korea, from March 2010 to October 2018. Specifically, the MRI scans were
first captured by making use of a 3.0 Tesla Achieva system (Phillips, the Netherlands) from
March 2010 to June 2017. This MRI system was then replaced with a 3.0 Tesla Skyra
system (Siemens AG Healthcare, Germany) from July 2017 to October 2018. The patients
were placed in the supine position and the humerus in a neutral position. All scans in the
entire dataset only consist of T2-weighted coronal slices, coming with a slice thickness of 2
mm.

Among all subjects with a shoulder MRI scan available, only patients with rotator cuff
pathology were included for this study. The exclusion criteria were (1) a history of prior
shoulder surgery, (2) bone or joint destruction due to infections or tumorous conditions, (3)
severe degenerative arthritis or avascular necrosis, (4) fractures with/without dislocations,
and (5) large calcific deposits in the supraspinatus tendon (over 1 cm). As a result, 2,447
patients who met our inclusion/exclusion criteria were included. The included patients were
categorized as follows: (1) normal or partial thickness tears with a thickness less than 50%
of the tendon thickness, (2) partial thickness tears with a thickness more than 50% of the
tendon thickness, and (3) full-thickness tears (Osti et al., 2017; Katthagen et al., 2018).
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In the presence of a full-thickness tear or in the presence of a partial thickness tear that
is exceeding more than 50% of the tendon thickness, an image is annotated as belonging
to the tear class. Otherwise, it is annotated as belonging to the normal class. The total
number of patients is 2,447: 1,628 normal patients and 819 tear patients. For each patient,
the dataset contains an MRI scan consisting of 16 shoulder slices. We split the dataset into
a training set and a test set, using a ratio of 9:1. We also used one tenth of the training
images for validation purposes. The patient cohort statistics are summarized in Table 1.
Our annotated dataset is publicly available.

Data augmentation was implemented using randomization, using a probability of 0.5,
selecting all parameter values in an empirical way. For rotation, the angle was randomly
selected in the range of [-15, 15] degrees. The kernel size for Gaussian blur was also randomly
selected in the range of [1, 3, 5, 7, and 9]. Gaussian noise was normalized with mean 0 and
variance 0.1.

4.2. Implementation Details

Baseline 1: Human We selected ten people knowledgeable about the medical domain
(medical school senior students and university hospital residents). They diagnosed the
images in our test set.

Baseline 2: Wavelet feature extraction and classification To investigate the effec-
tiveness of our model, we adopted the feature extraction method of (Nayak et al., 2016) as a
baseline. In particular, the authors of (Nayak et al., 2016) applied a 3-level wavelet decom-
position and Probabilistic PCA (PPCA) to brain MRI images, extracting a 13-D feature
vector per image. Furthermore, they created an AdaBoost classification model. Given that
this approach was able to classify brain lesions with a promising effectiveness, we extracted
features by applying the same techniques to the shoulder MRI scans at our disposal. How-
ever, unlike the model of Nayak et al., 2016, we have to classify the presence or absence of
tears in 16 slices instead of a single image. As such, by applying a 3-level wavelet decom-
position and PPCA to the slices available, we created a total of 208 (= 13 × 16) feature
vectors, which were then classified using (1) a k-nearest neighbor model (k = 9) and (2)
AdaBoost (Schapire, 2013) (10 estimators), with the latter obtaining the highest accuracy
in Nayak et al., 2016.

Proposed approach We implemented our approach using Python 2.7 and PyTorch 1.0,
leveraging a VGG-16 network pretrained on ImageNet (Deng et al., 2009). Execution was
done on two Intel(R) Xeon(R) E5-2620 2.4GHz CPUs and an NVIDIA GeForce GTX TI-
TAN X GPU. The batch size was 32, the learning rate was 1e-4, and the overall number of
epochs needed to reach training error convergence was 35.

4.3. Results

We evaluated the effectiveness of diagnosis using accuracy and the AUC score. Other than
that, the model robustness was quantified using recall (a.k.a. sensitivity), precision, and
the F1 score. Together with the sensitivity, specificity was also calculated in support of a
clinical assessment.
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(a) ROC curves (b) Confusion matrix

Figure 4: ROC curves and confusion matrix for our approach.

(a) PR curves for XGBoost (b) PR curves for our approach

Figure 5: PR curves for XGBoost and our approach.

Table 3 shows that the diagnosis accuracy of the human annotators is 76% on average,
with the individual values varying between 67% to 85%.

Table 2 shows that our approach towards RCT diagnosis achieved an accuracy of 87%,
outperforming the accuracy of the different baselines by at least 13%. The accuracy values
achieved by the conventional machine learning approaches are even lower than the accuracy
values achieved by the human annotators. Even though the wavelet transform feature ex-
tractor can extract spatial information from the given data, hereby achieving good accuracy
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(a) Normal case slices

(b) Grad-CAM output

Figure 6: Grad-CAM results for normal case slices.

(a) Partial-thickness tear slices

(b) Grad-CAM output

Figure 7: Grad-CAM results for partial-thickness tear slices.
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(a) Full-thickness tear slices

(b) Grad-CAM output

Figure 8: Grad-CAM results for full-thickness tear slices.

values in the context of brain image analysis, this approach is not able to extract effective
features from the given MRI scans.

In terms of model robustness, our approach outperforms all baselines in terms of all
metrics. In particular, our approach is able to obtain the highest m-AUC score (98%) and,
as shown in Figure 4a, the highest specificity value, thus demonstrating a high ability to
correctly identify patients who are not suffering from RCTs.

Lastly, to gain insight into the impact of class imbalance, we plotted the PR curves
for two representative models in Figure 5. Compared to the PR curve of XGBoost, the
PR curve of our approach is better for partial-thickness tears (by 38%). Furthermore, the
confusion matrix presented in Figure 4b shows that our approach obtains an accuracy of
about 38% for the partial-thickness tear class in the presence of a high class imbalance.
However, it is also clear that improving the effectiveness of the proposed approach in the
presence of a high class imbalance remains a future work item.

5. Discussion

The most important finding of our study is that, for computer-aided diagnosis of RCTs in 3-
D MRI scans, the use of a CNN with a weighted linear combination layer is able to produce
a higher diagnostic accuracy than human annotators. In addition, the approach proposed
in this study is able to make a distinction between low-grade partial-thickness RCTs (with
a thickness of less than 50%), high-grade partial-thickness RCTs (with a thickness of more
than 50%), and full-thickness RCTs. Moreover, our approach is able to localize the patho-
logical lesions related to RCTs, such as the footprint at the musculotendinous junction,
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as highlighted in Figure 6, Figure 7, and Figure 8 using Gradient-weighted Class Activa-
tion Mapping (Grad-CAM) (Selvaraju et al., 2017). Based on the outcome of this study,
it should be possible to develop a segmentation technique that is able to automatically
detect rotator cuff lesions. Furthermore, it may be helpful to construct a model for 3-D
reconstruction of the shape of an RCT.

The ground truth for the raw RCT MRI dataset was created by a single orthopedic
surgeon who has more than 10 years of experience as a shoulder specialist, with reviewing
taking place two times, using an interval of two weeks in-between. Moreover, the RCT
diagnoses were confirmed through MRI diagnosis by a musculoskeletal radiologist. In this
context, it is worth mentioning that it may be more accurate to confirm the RCT diagnoses
by arthroscopic findings. However, patients with low-grade partial-thickness RCTs were
treated conservatively, and as such, verification was done through MRI diagnosis by a
radiologist.

The dataset used in this study comes with a skewed distribution, with the number of
normal MRI scans being much higher than the number of MRI scans having partial- or full-
thickness tears. Indeed, the raw RCT MRI dataset was obtained in a university hospital
that uses MRI as a screening test. Due to many refractory patients who failed conservative
treatments, there may be many normal rotator cuff patients, compared to the number of
RCT patients. Moreover, patients with Bankart lesions, SLAP tears, or recurrent dislocation
were classified as normal control patients if the rotator cuff did not have any pathological
lesions, leading to a further increase in the number of normal patients. However, the bias
introduced by the skewed distribution may be minimal, given that this study did not focus
on the size or shape of RCTs.

Limitations In this study, a comparison was made using testing set between the diagnos-
tic values obtained by orthopedic residents and the diagnostic values obtained by the newly
proposed computational model, and where the orthopedic residents cannot be considered
experts yet. This is different from other studies, which typically compare the diagnostic
values between radiologists and computer-aided models. Therefore, the diagnostic values
obtained by the human annotators in our study were relatively lower than the ones pre-
sented in other studies (Dinnes et al., 2003; Lenza et al., 2013; Liu et al., 2020). This hints
at the difficulty of diagnosing RCTs in 3-D MRI scans when someone is not specialized for
the shoulder. As such, we believe that the predictive model proposed in this study could be
used as a supplementary screening tool to overcome diagnostic difficulties in a more general
clinical setting. Finally, we would like to point out that our model for RCT diagnosis has
not been validated yet by making use of an external RCT dataset, given that such a dataset
is currently not publicly available.

Future Work In future research, we plan to improve the diagnostic accuracy of the
proposed approach, particularly focusing on addressing class imbalance issues. Furthermore,
we plan to develop a model that gives insight into where a tear can be found, as well as its
approximate shape and size, so to enable more effective shoulder surgery.
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