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Abstract
We develop a new model of insulin-glucose dynamics for forecasting blood glucose in type 1
diabetics. We augment an existing biomedical model by introducing time-varying dynamics
driven by a machine learning sequence model. Our model maintains a physiologically
plausible inductive bias and clinically interpretable parameters — e.g., insulin sensitivity
— while inheriting the flexibility of modern pattern recognition algorithms. Critical to
modeling success are the flexible, but structured representations of subject variability with
a sequence model. In contrast, less constrained models like the LSTM fail to provide reliable
or physiologically plausible forecasts. We conduct an extensive empirical study. We show
that allowing biomedical model dynamics to vary in time improves forecasting at long time
horizons, up to six hours, and produces forecasts consistent with the physiological effects
of insulin and carbohydrates.

1. Introduction

Type one diabetes (T1D) is an incurable chronic condition in which the pancreas produces
little to no insulin. This lack of insulin frustrates the regulation of blood glucose levels.
Left unmanaged, glucose will elevate, ushering in a host long- and short-term health com-
plications. There is no method of prevention, reversal, nor cure; T1D requires constant
management. Of the estimated 1.25 million Americans with T1D, 75% are diagnosed in
childhood, resulting in a life-long burden of disease management. Management typically
entails the injection of subcutaneous insulin to regulate glucose.
T1D is rife with complications. Insufficient insulin leads to chronically elevated blood glu-
cose; common complications including kidney disease, cardiovascular disease, eye disease,
and nerve disease. Patients diagnosed with T1D before age ten have a thirty-fold increased
risk of coronary heart disease and acute myocardial infarction compared to matched con-

© 2020 A. C. Miller, N. J. Foti & E. Fox.



Learning Insulin-Glucose Dynamics in the Wild

trols. Early-diagnosed T1D patients face a 14-18 year loss in life expectancy (Rawshani
et al., 2018). Children and adolescents with T1D begin to show signs of cardiovascular
disease after only ten years of disease duration (Singh et al., 2003; Järvisalo et al., 2004;
Margeirsdottir et al., 2010; Rawshani et al., 2018).
Excess insulin, on the other hand, can lead to acute complications, such as hypoglycemia.
Too much insulin lowers blood glucose to dangerous levels resulting in loss of consciousness
or even death (Snell-Bergeon and Wadwa, 2012). Existing insulin delivery systems may
target higher than desirable levels of blood glucose to avoid hypoglycemic events. This
reflects the asymmetry of negative effects of glucose levels — chronically elevated glucose has
negative long term consequences, while low glucose levels can be immediately catastrophic.
Such complications can be avoided by delivering “just enough” insulin. The determination
of “just enough” at any given moment is a challenge. One impediment is the unknown (and
time-varying) state of the T1D subject — e.g., How sensitive is she to insulin? How many
grams of carbohydrates has she absorbed? How do absorbed carbohydrates translate into
increased blood glucose?
Patients with T1D endure the constant burden of tuning insulin delivery. Fewer than one-
third of T1D patients in the US consistently achieve target blood-glucose levels (Miller
et al., 2015). To ease the burden and improve glucose regulation, automatic insulin delivery
systems are becoming the new standard for T1D management. Continuous glucose monitors
(CGMs) and insulin pumps facilitate the management of T1D. Additionally, these devices
present the opportunity to develop more effective insulin delivery algorithms.1

Like manual insulin delivery, automatic systems use CGM and insulin pump information to
determine the appropriate dose of insulin at any given moment. The insulin pump controller
uses forecasts of blood glucose a few hours into the future to deliver the appropriate basal
insulin dose. Improved forecasts enable finer control over glucose levels.

Improving forecasts Models of insulin-glucose interaction are used to predict future
glucose values. Traditionally, such models of insulin-glucose dynamics have been based in
physiology. The seminal Bergman minimal model is a multi-compartment insulin model
that describes the interaction between active insulin, blood glucose, and endogenous insulin
production (Bergman et al., 1981; Bergman, 2005). The more sophisticated UVA/Padova
T1D simulator includes a model for oral ingestion of carbohydrates to describe changes in
blood glucose (Dalla Man et al., 2014). The UVA/Padova simulator is a useful tool for
validating empirical models — it is FDA approved to test the efficacy and risk of insulin
delivery policies in automated delivery systems. These simulators, however, were developed
to be accurate in highly controlled experimental settings, not for modeling real-world data
with noise and missingness.
In contrast, data driven approaches — both traditional statistical methods and machine
learning tools — offer the promise of uncovering and leveraging patterns found in the data.

1. Automated delivery systems have been recently developed, measuring glucose every five minutes and
automatically adjusting insulin delivery; bolus doses are manually requested. See the Tidepool Loop
project (https://www.tidepool.org) for an additional example of an open automated insulin delivery
system.
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The challenge, of course, is to find models that can infer the intricate (and unobserved)
dynamics of the observed data.
Contributions and generalizable insights In this work, we develop a hybrid statistical
and physiological model of insulin-glucose dynamics for producing long-term forecasts from
real-world T1D management data — CGM, insulin pump, and carbohydrate logs. Our
model strikes a balance between purely statistical and purely physiological approaches. We
show that statistical machine learning model components — e.g., neural networks and state-
space models — can be part of a larger, physiologically-grounded model. This fused model
inherits the realistic inductive biases from the physiological model and the flexibility and
predictive power of modern machine learning sequence methods.
We show that this hybrid approach can improve forecasts over purely mechanistic or purely
statistical approaches on real-world T1D data. Additionally, we show that our model pro-
duces physiologically plausible counterfactual predictions under alternative insulin and meal
schedules, whereas statistical approaches do not. Importantly, we do not claim that our
model solves glucose forecasting for T1D management — all models struggle with forecast
accuracy at long time horizons. Rather, our contribution is the first in a new family of hy-
brid statistical-and-physiological models and evidence that this approach can better describe
long term structure in real-world T1D data, an important step toward better management
of T1D.
The biomedical and epidemiological literature is replete with structured models of com-
plex biological phenomena that may be too inflexible or under-specified to use with real-
world sensor data, but nevertheless provide a useful inductive bias (Anderson et al., 1992;
Dalla Man et al., 2002; McSharry et al., 2003; Kotani et al., 2005; Trayanova, 2011).
Our statistical-and-physiological hybrid approach has the potential to generalize to other
biomedical applications. As such, the presented methodology holds promise in many do-
mains beyond T1D.
Section 2 details the data and subjects incorporated into this work. Section 3 details the
proposed hybrid model, including the underlying physiological T1D simulator and statis-
tical time series model. Section 4 describes our experimental setup, evaluation metrics,
and empirical results. We conclude with a discussion of related work and future research
directions in Section 5.

2. Cohort and Data

Our data are observational measurements from two T1D participants using a continuous
glucose monitor (CGM) and an insulin pump throughout daily life. The blood glucose level
measurements are synchronized and collected using Apple’s HealthKit framework.2 Addi-
tionally, we consider the energy spent by the participant throughout the day, as summarized
by HealthKit. For every five minute period the following quantities are recorded:

• instantaneous continuous glucose monitor measurement (mg/dL),
• basal and bolus insulin delivered (insulin units),

2. https://developer.apple.com/documentation/healthkit
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Figure 1: Data for a single day: blood glucose as measured by CGM, insulin delivered by
pump, user carbohydrate log, and energy use captured every five minutes by HealthKit.

• estimated carbohydrate ingestion (grams), and
• estimated active energy burned (METs).

Figure 1 shows this data for a single day.
The management of T1D is highly personalized — carbohydrate intake and insulin dosage
for one person may not be appropriate for another. While this work only studies the data
of two individuals (separately), we analyze an individual’s data streams over a long time
window. We consider data collected over a 150 day period, using the first 120 days to
train and validate a forecasting model, and the subsequent 30 days to measure prediction
accuracy. At one sample every five minutes, each participant has recorded over 40,000 data
points. A summary of the time period for each participant is in Table 1.
Collecting and processing sensitive health data demands high security standards and strict
protocols to protect the privacy and interests of all study participants. The types of data
collected — CGM, insulin pump, meal logs, and activity — pose a potential privacy con-
cern to participants. Upon enrollment, all participants were made aware of these risks via
an informed consent form. To reduce privacy risks, we restrict the focus of our analysis
to a small number of temporal data streams relevant to the management of T1D. Per-
sonally identifying information was separated from study data; participants were assigned
unique keys. Additionally, researchers accessed the data through a secure virtual private
network (VPN). As this study is purely retrospective, there were no direct medical risks to
participants throughout the course of the study.
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Subject Train Test
start date # days # samples start date # days # samples

1 March 24 120 34381 July 22 31 8819
2 February 25 120 34396 June 25 31 8804

Table 1: Cohort and data summary.

2.1. Data Extraction

The raw CGM and pump data falls on a potentially irregular grid. For simplicity, we
interpolate CGM values to a fixed five minute grid, e.g. 6:00AM, 6:05AM, etc. For each five
minute period, we compute total insulin units delivered, grams of carbohydrates ingested,
and units of energy burned. For CGM gaps longer than five minutes in our observations, we
linearly interpolate the values for the relevant five minute periods;3 this method accounted
for fewer than 2% of all observations.

3. Methods

Insulin and glucose obey complicated unobserved dynamics. In T1D, subcutaneous insulin
takes time to absorb before reducing blood glucose. Analogously, ingested carbohydrates
are absorbed over time before increasing blood glucose levels. Time-varying endogenous
glucose production, motion, energy expenditure, and natural diurnal variation in insulin
sensitivity further complicate dynamics.
Statistical methods can find patterns in glucose, insulin, and carbohydrate sequences that
are predictive of future glucose values. However, these detected patterns may not be stable
or structured enough to form reliable long term predictions.
On the other hand, physiological models of insulin-glucose dynamics can — in controlled set-
tings — describe the evolution of blood glucose farther into the future. The T1D simulator
we study, the UVA/Padova simulator, is a physiologically-grounded model that describes
the interaction of glucose, insulin, and orally ingested carbohydrates within different sub-
systems of a T1D patient (Dalla Man et al., 2014). While the simulator is faithful to
T1D physiology, it was not designed to be robust to the noise and missing observations
commonly found in CGM, insulin pump, and meal logs. Additionally, the UVA/Padova
simulator does not account for fluctuations in insulin sensitivity and meal absorption rates,
limiting its application to short-range forecasts.
Here we present a unified model that that fuses two distinct components — the structured
UVA/Padova simulator and a deep state-space model — that balances the useful inductive
bias of the physiological simulator with the flexibility of a modern machine learning sequence
model to describe complex dynamics in time series data.

3. A cubic spline interpolation was initially used, but discarded because it created glucose values outside
of the observed range (and in some instances, negative values).
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Figure 2: Graphical depiction of the DTD-sim model.

The UVA/Padova simulator parameters, which represent insulin/carbohydrate absorption
rates and sensitivities, undergo physiologically plausible variation over time that we describe
with a deep state-space model. The result is a parsimonious representation of blood glucose
that describes short time scales with the UVA/Padova model (for which it was designed),
and long-range temporal variation with the deep state-space model. We formalize this
fused approach within a single probabilistic generative model, which we call the Deep T1D
Simulator (DTD-Sim). First, we describe the full DTD-Sim generative model. We then unpack
the individual model components in the following two subsections.

The DTD-Sim Model The generative model assumed for the DTD-Sim model is depicted
graphically in Figure 2. The aim is to learn a non-linear mapping such that the time-varying
parameters to the UVA/Padova simulator can be well-modeled with linear dynamics in some
latent space. The DTD-Sim model is formally specified as:

z0 ∼ N (µ0,Σ0) initial latent state (1)
zt ∼ Azt−1 +Bat +Q1/2ϵt, ϵt ∼ N (0, I) latent temporal dynamics (2)
dt = NNϕ(zt) dynamic simulator params. (3)
xt = UVA-step(xt−1,dt,ut, s,∆t) T1D simulator (4)
yt ∼ N (CGM(xt, s), σ

2) CGM observation (5)

where zt ∈ RD, dt ∈ RK , xt ∈ R13, ut ∈ RJ , and s ∈ RJ . The dimensionality of the latent
space D can be tuned. The physiological state xt size is fixed by the simulator definition.
The simulator parameters chosen to be dynamic, K, and static, J , is a hyperparameter
setting, which we fix for this work and describe in Appendix A.
DTD-Sim incorporates the following modeling components:

• linear dynamics of the latent state, z1, . . . , zT , parameterized by the dynamics matrix
A, input matrix B, process covariance Q, and initial mean µ0 and covariance Σ0,
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• A non-linear mapping from the latent state zt to the time-varying simulator param-
eters dt, modeled as a neural network parameterized by ϕ,

• UVA-step integrating the UVA/Padova ODEs, which evolves the physiological state xt

as a function of patient-specific dynamic and static parameters (dt and s, respectively)
and insulin delivery and carbohydrates ingested (ut) over a period of time ∆t, and

• the observed CGM value yt at time t, modeled via a normal with mean CGM(xt, s) ≜
x(6)/VG, where VG is a parameter in s.

The parameters to be estimated are θ = {A,B,Q,µ0,Σ0, s, ϕ, σ}; we construct a variational
maximum a posteriori estimate of θ. In the following two sub-sections we describe the T1D
simulator and the proposed deep state-space model, both of which present challenges for
performing parameter estimation. We address these challenges in Section 3.3.

3.1. T1D Simulator

The UVA/Padova T1D simulator represents the instantaneous state of various subsystems of
the body, how it changes over time (i.e. dynamics) and how it is driven by inputs (e.g. insulin
and ingested carbohydrates). We denote the instantaneous state at time t as xt for times
t = 1, . . . , T .4 How xt changes over time is defined by instantaneous dynamics

dx

dt
= f (uva)(xt,ut,p) , (6)

where the dynamics are a function of the current state, time-varying inputs, and static
parameters, respectively.5 The evolution from state xt−1 to xt involves integrating these
dynamics over the time increment ∆t, which in this work we assume is always one so that:

xt+1 =

∫ t+1

t
f (uva)(xt′ ,ut,p)dt

′ (7)

≜ UVA-step(xt,ut,p) . (8)

Practically, this step integral can be computed using an ODE solver such as Euler’s method
or Runge-Kutta methods (Burden and Faires, 2015).
The model represented by xt and f (uva) is a highly constrained yet complex system devel-
oped over a series of papers that spans two decades (Dalla Man et al., 2002, 2007, 2009,
2014) and rooted in the seminal work of Bergman et al. (1981). The components of the
state vector xt correspond to interpretable quantities. For instance, a set of components of
xt describe the subcutaneous insulin delivery sub-system, including a dimension that takes
delivered insulin as an input. Similarly, other dimensions of xt describe the oral glucose

4. In the exposition, we overload t to represent both index and time value, i.e. t should be thought of as
integer values in [0, T ]. We assume that the time horizon of interest has been rescaled so that the times
of measurement are one unit apart.

5. Note that we have not included the dynamic parameters dt in the previous section, as the original
model only features static subject-specific parameters p. How these dynamic parameters factor in will
be described in Section 3.2.
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Figure 3: Static UVA/Padova lacks the capacity to describe real CGM data. Top: model
fit comparison of static UVA/Padova simulator and dynamic DTD-sim model for a full day
of CGM data. Bottom: corresponding insulin and carbohydrate data. Without varying pa-
rameters in time and accounting for data noise, the T1D simulator model does not describe
observed data.

sub-system models the process by which ingested carbohydrates become measured glucose,
including a dimension that is driven by grams of ingested carbohydrates as an input.
The nonlinear function f (uva)(xt,ut,p) describes the instantaneous change in state xt over
time. These dynamics are driven inputs into the system — grams of carbohydrates in-
gested and units of insulin delivered — represented by ut. Dynamics are also specified
by subject-specific parameters p, which describe (among other aspects) the rate of absorp-
tion of carbohydrates and insulin and the sensitivity of blood glucose to absorbed insulin
concentration.
We implemented the T1D simulator described in Dalla Man et al. (2014) within the auto-
matic differentiation framework JAX (Bradbury et al., 2018). We use an Euler integration
step to solve the ODE at each time t. See Appendix A for details on all components of xt,
simulator parameters, and details of the time-derivative function.
The UVA/Padova T1D simulator was designed to validate insulin delivery policies in silico
over short periods of a few hours at a time — a task for which it is FDA-approved. It was
not designed, however, to model continuously collected glucose monitor, insulin pump, and
carbohydrate log data over the course of weeks and months. These in-the-wild data are
riddled with sources of variability that frustrate the direct application of the UVA/Padova
model, stemming from time-varying subject sensitivities, noisy measurements and move-
ment. To illustrate this point, we compare the static UVA/Padova data fit to the DTD-sim
data fit, depicted in Figure 3. The static model does not have the capacity to describe the
variability present in noisy data. However, when parameters are allowed to smoothly vary
in time, the simulator is able to describe the data over long periods of time.
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3.2. Deep State Space Model

To augment the capacity of the T1D simulator model, we allow some of the originally static
parameters p to vary in time. We separate the static and time-varying parameters into
two vectors denoted s and dt, where pt ≜ (dt, s) represents the concatenation of static and
dynamic parameters.
We use a state-space model to capture the temporal structure of these time-varying pa-
rameters. A state space model describes the evolution of a stochastic process in terms of
transition dynamics. We use linear Gaussian dynamics to describe the evolution of zt

zt = Azt−1 +Bat +Q1/2ϵt , (9)

where ϵt ∼ N (0, I), and at is a time-varying input sequence of covariates. Linear Gaussian
dynamics admit computationally tractable inference routines, but assume the restrictive
assumption that the latent variable has a multivariate normal distribution (Murphy, 2012).
The parameters pt = (dt, s) of the UVA/Padova simulator are a physiological representation
of the underlying system and thus must satisfy complex constraints — to assume dt evolves
according to linear dynamics is oversimplified. To bridge this gap, we learn a neural network
to link the latent variable zt to the dynamic parameters dt fed into UVA-Step at each time
step. We denote the parameters of the neural network link function as ϕ, dt = NNϕ(zt). In
this work, we use a multi-layer perceptron with two hidden layers of size 128 with rectified
linear unit (relu) nonlinearities.
A state-space model is a natural fit to describe the periodic variation typical of a T1D sub-
ject. The well-documented “dawn phenomenon” indicates diurnal variation in endogenous
glucose production (Porcellati et al., 2013). In fact, recent developments in T1D simula-
tors have begun to incorporate time-variation in insulin sensitivity and endogenous glucose
production (Visentin et al., 2018), albeit with rigidly defined variation over the course of a
single day. Linear Gaussian state space models can describe periodic variation at multiple
temporal resolutions and allow the data to dictate the temporal variability of the simulator
parameters.

3.3. Model Fitting and Inference

The goal of model fitting and inference is to find a set of parameters θ̂ that produces good
forecasts. We use maximum-likelihood estimation to fit θ̂, which involves maximizing the
marginal log-likelihood of the data maxθ ln p(y;θ). Unfortunately, the introduction of the
neural network link function and non-linearities in the UVA-step simulator do not allow for
the closed form computation of the marginal likelihood, complicating inference.
To overcome this intractability, we use variational inference methods to optimize a lower
bound of the log-marginal-likelihood (Jordan et al., 1999; Blei et al., 2017). The main issue
prohibiting the computation of ln p(y;θ) is that the posterior of z0, . . . , zT , p(z1:T |y;θ),
cannot be computed in closed form. To circumvent this, variational methods introduce a
posterior approximation for the latent variables z, qλ(z1, ..., zT ) = qλ(z1:T ), specified by
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variational parameters λ, resulting in the standard variational objective

L(θ,λ) = Eqλ(z) [ln p(y | z;θ)]−KL(qλ(z)||p(z;θ)) (10)
≤ ln p(y |θ) . (11)

The variational objective is an expectation over the approximate posterior for z1:T . Classic
variational methods for graphical models (Ghahramani and Hinton, 2000; Beal et al., 2006;
Blei and Lafferty, 2006; Wainwright and Jordan, 2008) rely on conditionally conjugate
structure and closed-form updates to optimize the ELBO. Due to the non-linear structure
in our generative model, we use Monte Carlo estimates of the gradient (Rezende et al.,
2014) to maximize Eq. (10) over θ and λ. A prior p(θ) can also be incorporated into the
variational objective.

Non-centered parameterization The most common form for the approximate posterior
for z1:T makes the mean-field assumption so that qλ(z1:T ) =

∏T
t=0 qλt(zt), breaking all

temporal dependencies (Wainwright and Jordan, 2008). However, the prior over z1:T is
auto-correlated by design through Eq. (2) — we want the latent process to exhibit smooth
dynamics, reflecting the belief that physiological parameters change slowly over time. While
algorithmically simple, a mean-field approximation is not appropriate in this scenario.
Instead, we reparameterize qλ(z1:T ) in terms of the exogenous noise variables ϵ1:T . Using
such an alternative parameterization can be algorithmically beneficial (Murray and Adams,
2010). Instead of approximating the posterior over z1:T , we can equivalently approximate
the posterior over ϵ1:T and then deterministically transform this posterior (or its samples) to
obtain an induced approximate posterior over z1:T . Because the ϵt are a priori i.i.d. standard
normal, their posterior can be more accurately modeled with a mean-field approximation.
Additionally, the KL divergence term in Eq. (10) is simpler to compute.
We approximate the posterior of each ϵt with a multivariate Gaussian with separate means
and covariances (which we take to be diagonal for simplicity)

qλt(ϵt) = N (m
(t)
λ ,diag(s

(t)
λ )) , (12)

where λt = (m
(t)
λ , s

(t)
λ ). Recall that zt is obtained from ϵt according to

zt = Azt−1 +Bat +Q1/2ϵt , (13)

which shows that zt depends on zt−1 and the induced posterior of z1:T will capture auto-
correlation as desired. This dependence is inherited from the structure of the generative
model — the correlation induced by the dynamics A. The variational parameters m

(t)
λ and

s
(t)
λ will then alter this distribution to reflect the information learned from the data.

The variational objective when using the reparameterization in Eqs. (12) and (13) is nearly
identical to the standard ELBO

L(θ,λ) = Eqλ(ϵ) [ln p(y | g(ϵ),θ) + ln p(ϵ |θ)− ln qλ(ϵ)] (14)
= Eqλ(ϵ) [ln p(y | z,θ)]−KL (qλ(ϵ) || N (0, I)) . (15)

10
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where the expectation is now over qλ(ϵ1:T ) and g(·) maps ϵ to z as defined in Eq. (13). The
KL divergence term is a simple analytic function. The expected log-likelihood term, how-
ever, is still intractable. Because we can easily sample from qλ(ϵ1:T ) we instead form a Monte
Carlo estimate of the gradient of Eq. (15) and use stochastic gradient methods (Rezende
et al., 2014). Using the whitened space is a simpler alternative to more advanced variational
approximations for state space models (Archer et al., 2015; Bamler and Mandt, 2017) —
incorporation of these techniques may benefit learning θ in our model setting.

Maintaining stable dynamics When fitting the dynamics matrix A, a practical con-
sideration is ensuring stability in the latent time series. If the maximal eigenvalue of A
is larger than one, zt will diverge over time, leading to unstable forecasts. Ensuring the
maximal eigenvalue of A is less than one is in tension with the desire to model long term
structure in zt. If the maximal eigenvalue of A is less than one, the dynamics defined by
A will dampen z, and encourage the process to go to zero when unrolling into the future
(i.e. forming long term forecasts).
To ensure that the eigenvalues of A are close to one in magnitude, we subtract a penalty
term from Eq. (15) of the form trace(A) − D — that is the average eigenvalue should be
close to one. Our stochastic gradient updates may make A become unstable, so throughout
optimization we project the iterates A back into the set of unit norm matrices by re-
normalizing eigenvalues that are greater than one. We found this projection to be an
essential step to reliably learn model parameters θ with stochastic gradients.

3.4. Forecasting

Given a variational approximation for the latent states up to time t, qλ(ϵ1:t), constructing
forecasts is a straightforward application of the DTD-Sim generative process. Given data y1:t

and the corresponding variational parameters m
(1:t)
λ and s

(1:t)
λ , we can construct a forecast

for a time horizon h by first sampling from the posterior distribution over latent variable
dynamics

z0 ∼ N (µ̂0, Σ̂0) (16)
ϵ̃1:t ∼ qλ(ϵ1:t) approx. posterior sample (17)
zt+j ∼ Âzt+j−1 + B̂at+j + Q̂1/2ϵ̃t+j , j = 1, . . . , h induced posterior (18)

where ϵs ∼ N (0, I) for s > t and µ̂0, Σ̂0, Â, B̂, and Q̂ are plug-in estimates of the dynamics
parameters from optimizing the variational objective. We then run the simulation forward

d̂1:t+h = NNϕ̂(z1), . . . , NNϕ̂(zt+h) (19)
x̂1:t+h = UVA-solve(d1:t+h, ŝ, x̂0) (20)
ŷ1:t+h ∼ N (CGM(x1:t+h, ŝ), σ̂

2) (21)

where again ŝ and σ̂2 are plug-in estimates from maximizing Eq. (15). This procedure
produces one posterior predictive sample of yt+1:t+h, which has a non-Gaussian marginal
distribution due to the nonlinearities in the simulation component of the model. We use
the plug-in Bayes estimate over samples of z, Eqλ(z)

[
yt+h

]
for forecasts.

11



Learning Insulin-Glucose Dynamics in the Wild

75

100

125

150

175

200

225
gl

uc
os

e 
(m

g/
dl

)
glucose
ARMA(2,2)
LSTM
Static sim
DTD-sim

07-31 08 07-31 09 07-31 10 07-31 11 07-31 12 07-31 13 07-31 14 07-31 15 07-31 16 07-31 17 07-31 18 07-31 19
0

25

ca
rb

 (g
) carbs

0

2

in
s 

(IU
)insulin

75

100

125

150

175

200

gl
uc

os
e 

(m
g/

dl
)

glucose
ARMA(2,2)
LSTM
Static sim
DTD-sim

07-24 10 07-24 11 07-24 12 07-24 13 07-24 14 07-24 15 07-24 16 07-24 17 07-24 18 07-24 19 07-24 20 07-24 21
0

20

ca
rb

 (g
) carbs

0.0

2.5

in
s 

(IU
)insulin

50

100

150

200

gl
uc

os
e 

(m
g/

dl
)

glucose
ARMA(2,2)
LSTM
Static sim
DTD-sim

07-23 08 07-23 09 07-23 10 07-23 11 07-23 12 07-23 13 07-23 14 07-23 15 07-23 16 07-23 17 07-23 18 07-23 19
0

25

ca
rb

 (g
) carbs

0

2

in
s 

(IU
)insulin

75

100

125

150

175

200

gl
uc

os
e 

(m
g/

dl
)

glucose
ARMA(2,2)
LSTM
Static sim
DTD-sim

07-22 13 07-22 14 07-22 15 07-22 16 07-22 17 07-22 18 07-22 19 07-22 20 07-22 21 07-22 22 07-22 23 07-23 00
0

20

ca
rb

 (g
) carbs

0

2

in
s 

(IU
)insulin

Figure 4: A sample of four forecasts from different days. Observed glucose is in solid black;
future glucose is in solid grey with dots indicating every half hour. In solid purple we depict
the proposed method DTD-sim forecasts and 95% posterior credible intervals. We also depict
the point forecasts for the static UVA/Padova simulator, ARMA(2,2) and LSTM models.

4. Empirical Study

Here we describe the empirical study conducted on the cohort detailed in Section 2. We
first measure the quality of forecasts produced by our DTD-sim model and compare it to a
variety of baseline approaches. We then look at generated forecasts under counterfactual
future meal and insulin schedules, examining how the different models are influenced by
these inputs.

4.1. Forecasting glucose at varying time horizons

We measure the accuracy of forecasts at multiple time horizons h, up to six hours. For
each forecast horizon h, we report the mean absolute error (MAE) between the forecast and
the true glucose value. In Appendix B we report additional statistics, including root mean
squared error, and mean absolute scaled error (MASE) (Hyndman and Koehler, 2006). We
also consider predictions in different contexts. These contexts are defined by time of day,
sleep, recent meals, recent bolus injections, or elevated/low glucose levels. Forecast accuracy
is more important in some contexts — for example automated monitoring blood glucose
during sleep is crucial for safely avoiding hypoglycemic episodes.

Baseline methods We compare our approach to a handful of baseline approaches for
time series forecasting. These approaches include purely statistical approaches and a time-
invariant simulator. Specifically, we compare our approach to the following baselines

• autoregressive moving average (ARMA) models,
• long short term memory (LSTM) neural networks,
• the static UVA/Padova simulator, and
• the last available glucose measurement.
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Figure 5: Prediction results by context. The first context, anytime, is an average over
the entire prediction window. We observe that the DTD-Sim model outperforms both the
statistical and mechanistic baselines across all contexts at longer prediction horizons, where
h is one to six hours.

For all models, we train on the first 90 days, validate using the next 30 days and test on
the remaining 31 days (as described in Table 1). For the ARMA model, we grid search
over both autoregressive order p and moving average order q using a validation set. The
LSTM model includes a forget gate, and hidden states feed into a two layer perceptron
with a ReLU nonlinearity; we search over latent state dimension size using a validation set.
Linear time series methods have been used extensively for blood glucose forecasting, and
we include the non-linear LSTM model as an additional strong benchmark (Montaser et al.,
2017; Xie and Wang, 2018). The static UVA/Padova T1D simulator model is a baseline
with fixed simulator parameters over time. Because this model cannot describe long periods
of time, we re-train the static simulator for each forecast over a running window of data.
Here, we use a moving window of 6 hours to tune model parameters before constructing a
forecast.
We compare these baselines to the DTD-Sim model where we grid search over the latent
state dimension D using a validation set. The results of the these quantitative experiments
are depicted in Figure 5a. The DTD-sim model performs as well or better than the baselines
a few hours after the baseline. We see a particularly large improvement at much longer
horizons — for example the DTD-Sim model improves upon the baseline LSTM by 5% at
one hour, 27% at two hours, and 35% at three hours and 36% at six hours. Further, we see
improvements at long horizons across most contexts. The LSTM and ARMA(2,2) models
form the best short term forecasts, at 5 to 30 minutes in the future.
The static simulator underperforms the other dynamical models, including the purely sta-
tistical models. This poor performance highlights the unrealistic constraints imposed by
the simulator — that sensitivities and endogenous glucose production are fixed in time.
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Figure 6: The hybrid model balances sensitivity to meals and bolus insulin doses. Depicted
are four counterfactual scenarios — bolus/no-bolus insulin and meal/no meal, each one hour
after the latest observation. The fully mechanistic static simulator model is overly sensitive
to bolus insulin doses and full meals, quickly growing above 200 mg/dl and shrinking to 0
mg/dl. The AR and LSTM models are less sensitive to bolus doses and full meals. The
LSTM model appears to be influenced by a large meal but not a bolus insulin dose. The
DTD-sim model is both sensitive to bolus insulin and meals, but more stable than the static
simulator.

For a qualitative comparison of model forecasts, we graphically depict a sample of forecast
sequences in Figure 4. In these plots we can see some differing behaviors between the
models, including the sensitivity to carbohydrate and insulin inputs (which we explore in
more detail in the following section).
While model predictions may be off in terms of mean squared error, the general shape of the
forecast can still match the true glucose value quite well. To quantify this and compare our
model, we compute the empirical correlation between the forecast ŷt:t+h and true glucose
yt:t+h for h = 6 hours. We report the average forecast correlation over N = 1,000 randomly
chosen test locations, plotted in Figure 5b. We observe that, on average, the DTD-sim
model consistently produces forecast sequences that correlate more highly than the baseline
approaches.

4.2. Counterfactual forecasts

There is a causal relationship between insulin and carbohydrate inputs and the resulting
blood glucose level — increasing insulin dose should cause the glucose level to fall, and
ingesting a large meal should cause the glucose level to rise. The T1D simulator encodes
this inductive bias in the structure of the differential equation f (uva)(·). The statistical
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methods, on the other hand, need to discover this relation from data and could potentially
learn a spurious relationship.
We compare the forecast behavior of the ARMA, LSTM, Static simulator and DTD-Sim
models under different counterfactual scenarios. We construct a synthetic insulin delivery
and meal schedule and generate forecasts given a fixed sequence of observed data. We
consider two settings for each input — a 50 gram meal compared to no meal and a bolus
dose of 8 insulin units compared to no bolus dose (with a constant basal delivery) resulting
in four counterfactuals. We graphically compare these scenarios in Figure 6.
The static simulator is overly sensitive to insulin, going to zero within three to four hours
when receiving both a bolus dose or just basal insulin. Similarly, the static simulator spikes
to over three hundred after a meal (with and without the insulin bolus). The LSTM model
appears to be sensitive to carbohydrate inputs, with predicted glucose increasing shortly
after the meal. However, the LSTM model does not appear to be sensitive to an insulin
bolus, forming similar forecasts in the bolus and no bolus scenarios. The DTD-sim model
noticeably reacts to carbohydrate and insulin inputs, with glucose increasing shortly after
receiving a meal and decreasing shortly after receiving an insulin bolus.
Additional synthetic meal and insulin schedule comparisons are depicted in Figure 8 at
randomly selected test points. We observe a similar pattern of carbohydrate sensitivity and
insulin insensitivity for the LSTM compared to the DTD-sim model.

5. Discussion and Related Work

Related work As machine learning methods become more pervasive in the sciences, a
common goal is to endow ML algorithms with knowledge from applied domains; our work
shares this goal with many other approaches.
For example, physics-guided neural networks have been applied in a geological setting
(Karpatne et al., 2017). This approach introduces constraints on activations and outputs
of the neural network model to enforce physical consistency. In the application of modeling
lake temperatures, the physics-guided RNN leverages physical knowledge by pre-training on
data simulated from a standard differential equation model of lake temperature (Jia et al.,
2019). More broadly, simulation models in the physical sciences are an invaluable tool for
understanding complex phenomena. Machine learning techniques have been used to aid
inference in applying simulators to real data (Cranmer et al., 2020), develop new models
(Carleo et al., 2019), constrain neural networks (Raissi et al., 2019), and model control
problems (Long et al., 2018). With these lines of research we share the common goal of
incorporating complex scientific knowledge into a model for real data. Our approach does
not use physical laws or prior knowledge to restrict a flexible model, but rather embeds a
physiological model into the data generating procedure. We introduce the flexibility needed
to model real-world observational data by allowing physiological parameters to vary in time
according to a sequence model. A more expansive study of hybrid statistical-and-physical
techniques, such as pre-training on simulated data, may yield additional benefits and will
be considered in future work.
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Physiological simulators of insulin-glucose dynamics for T1D subjects have been developed
over the past few decades (Cobelli et al., 2011). One line of research has matured into a
FDA-approved simulator (Dalla Man et al., 2002; Kovatchev et al., 2009; Dalla Man et al.,
2014). Further enhancements have been considered and tested in lab settings, including
improvement of meal simulation (Dalla Man et al., 2007) and the incorporation of physical
activity (Dalla Man et al., 2009). Physiological models of T1D have been applied to real
world CGM and insulin pump data. Liu et al. (2019) demonstrate the utility of a simple
physiological model fit using a deconvolution method of the glucose signal. This work,
however, does not consider temporal-variation or patterns in subject-specific variables, such
as insulin sensitivity.
The use of tractable latent dynamics with a neural network emission or link function is a
common strategy for describing complex observations. Structured variational autoencoders
(Johnson et al., 2016) and deep state-space models (Krishnan et al., 2017) both use vari-
ational inference to fit models with complex observations or complex dynamics (or both).
Our approach, while conceptually similar, is distinct in that we model the latent dynamics
that capture the variation in simulator parameters rather than the data itself. We model a
low-dimensional phenomenon governed by complex, time-varying latent dynamics
A related line of modeling work incorporates differential equation solvers in probabilistic
models (Chen et al., 2018; Rubanova et al., 2019). This framework uses neural networks to
learn the functional form of the dynamics. Our goal is to instead make an existing ODE
simulator more flexible, but still enjoy the inductive bias described by the simulator.

Discussion and future work Accurately forecasting blood glucose can afford more time
to adjust insulin dosage or meals, crucial to the management of T1D. To construct more
accurate and physiologically plausible forecasts, we integrated a T1D simulator into a ma-
chine learning sequence model and applied it to real-world CGM, insulin, and meal log data.
We view the DTD-Sim model as a first step in building a reliable glucose forecasting model
that will enable better planning and management for T1D.
We envision many improvements to this model for long-term blood glucose forecasts. One
obvious shortcoming of our approach is that we are not directly modeling the stochasticity
of the input carbohydrates and insulin. While latent variables can account for some of this
uncertainty, a direct model of noise in both the observation of meals and their overall mass
could improve forecasts.
Another direction for improvement is to include additional input sequences as inputs to
DTD-Sim. For example, movement, step count, heart rate, or other proxies for energy
expenditure may inform the temporal variation in insulin sensitivities. Explicitly modeling
seasonal variation at daily and monthly temporal resolutions may also improve forecast
accuracy. Further, the functional form of f (uva)(·) can likely be improved upon in a data-
driven way. While we assume that f (uva)(·) is fixed, we may want to use the simulator as a
starting point and relax the functional form given more observations.
The expression of T1D varies from person to person. Our algorithm development has been
limited to a small cohort. With an increased diversity in insulin-glucose observations, a
joint model of many subjects through a hierarchy may help improve long term forecasts.
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Finally, our hybrid statistical-and-physiological modeling approach may be suitable for
adapting other biophysical ODEs that describe complex phenomena over time to model
real-world data. Models of the cardiovascular system, biomechanics, or long term patient
trajectories could be augmented in a way similar to our approach.
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Appendix A. UVA/Padova T1D Simulator

As noted in the main text, the UVA/Padova T1D simulator model represents the instanta-
neous state of various subsystems of the body as a state vector and dynamics function

dx

dt
= f (uva)(xt,ut, s) ≡ ẋ (22)

where the components of xt ∈ R13 represents the instantaneous physiological state of the
body at time t, ut ∈ R2 denote the insulin units and carbohydrate mass delivered at
time t, and s are subject-specific simulator parameters that represent endogenous glucose
production rates and insulin sensitivity.
In the UVA/Padova model, the state is a thirteen-dimensional vector representing various
subsystems. The oral glucose subsystem contains components

x(1) = Qsto1 first stomach compartment (23)
x(2) = Qsto2 second stomach compartment (24)
x(3) = Qgut first stomach compartment (25)

The glucose subsystem describes two compartment glucose kinetics

x(4) = Gp plasma glucose (26)
x(5) = Gt tissue glucose (27)
x(6) = Gs subcutaneous glucose (CGM) (28)

The insulin subsystem describes insulin kinetics, including the absorption into active insulin

x(7) = Ip plasma insulin (29)
x(8) = Il liver insulin (30)
x(9) = XL (31)
x(10) = X active insulin (32)
x(11) = Ĩ (33)

Finally, the subcutaneous insulin subsystem describes the absorption kinetics of delivered
insulin

x(12) = Isc1 subcutaneous compartment one (34)
x(13) = Isc2 subcutaneous compartment two (35)

Given the definition of the xt state components, we define the dynamics of each subsystem
(along with useful intermediate quantities).
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The oral glucose subsystem evolves as

Q̇sto1(t) = −kgri ·Qsto1(t) +D · δ(t) (36)
Q̇sto2(t) = −kempt(Qsto) ·Qsto2(t) + kgri ·Qsto1(t) (37)
Q̇gut(t) = −kabs ·Qgut(t) + kempt(Qsto) ·Qsto2(t) (38)
Qsto(t) ≜ Qsto1(t) +Qsto2(t) (39)

Ra(t) ≜ f · kabs ·Qgut(t)

BW
glucose rate of appearance (40)

Glucose kinetics are

Ġp(t) = EGP (t) +Ra(t)− Uii(t)− E(t)− k1 ·Gp(t) + k2 ·Gt(t) (41)
Ġt(t) = −Uid(t) + k1 ·Gp(t)− k2 ·Gt(t) (42)

Ġs(t) = − 1

Ts
·Gs(t) +

1

Ts
·G(t) (43)

G(t) ≜ Gp(t)/VG (44)

where the endogenous glucose production and insulin-based utilization are defined

EGP (t) = kp1 − kp2 ·Gp(t)− kp3 ·XL(t) (45)

Uid(t) =
(Vm0 + Vmx ·X(t) · (1 + r1 · risk)) ·Gt(t)

Km0 +Gt(t)
(46)

Insulin kinetics are defined

İp(t) = −(m2 +m4) · Ip(t) +m1 · Il(t) +Rai(t) (47)
İl(t) = −(m1 +m3) · Il(t) +m2 · Ip(t) (48)

ẊL(t) = −ki ·
(
XL(t)− Ĩ(t)

)
(49)

˙̃I(t) = −ki ·
(
Ĩ(t)− I(t)

)
(50)

Ẋ(t) = −p2U ·X(t) + p2U (I(t)− Ib) (51)
I(t) = Ip(t)/VI (52)

The subject-specific simulator parameters s include

s =(kmin, kmax, kabs, f, b, d, VG, k1:2, VI ,m1:4, kp1:3, ki, (53)
Fsnc, Vm0,Km0, Ib, ke1:2, ka1:2, kd, ksc, BW ) (54)

We succinctly express these equations as f (uva)(x,u, s) : R13 × R2 × R29 → R13.

A.1. Time-varying simulator parameters

We augment the existing simulator model by allowing some components of the parameter
vector s to vary over time.
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Appendix B. Empirical Study Supplement

Here we include additional plots to support the empirical study. The mean absolute scaled
error (MASE) is defined as

MAE0(h) =
1

T − h

T∑
t=h

|Yt − Yt−h| (55)

qt(h) =
Yt − Ŷt|t−h

MAE(h)
(56)

MASE(h) = mean(|qt(h)|) , (57)

where MAE0(h) is the error of a simple baseline — the forecast value is equal to the latest
observation. Intuitively, MASE measures the MAE ratio between this simple baseline and
the predicted model — a value of 1 indicates no improvement over the baseline. See Hyn-
dman and Koehler (2006) for more details.

Appendix C. Inference Algorithm Details

In this appendix we provide a step-by-step overview of our proposed variational inference
algorithm for DTD-Sim. Throughout, we use the notation z1:T to indicate the set of all zt,
t = 1, . . . , T , and similarly for other variables.
Each iteration of the algorithm proceeds by sampling the latent trajectories z1:T and trans-
forming them into the parameters of the UVA-Padova simulator. The interpretable state-
space parameter at time t, xt, is then determined by integrating the UVA-Padova system
forward one time-step. Then, xt is used to compute the expected log-likelihood of the ob-
served data which we differentiate through in order to update the parameters. The detailed
steps of the algorithm are as follows:

1. Sample ϵ̃t ∼ N (0, I), t = 1, . . . , T .

2. Sample z0 ∼ N (µ0,Σ0).

3. For t = 1, . . . , T

(a) Construct zt = Azt +But +Q1/2ϵ̃t.
(b) Compute dt = NNϕ(zt).
(c) Compute xt = UVA-step(xt−1,dt,ut, s,∆t) using a numerical integration scheme.

4. Compute ∇λ,θ ln p(y1:T |z1:T ; θ), where

ln p(y1:T |z1:T ;θ) =

T∏
i=1

ln p(yt|zt;θ). (58)

5. Update λ and θ according to this gradients.
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Figure 7: Prediction results by context. The first context, anytime, is an average over
the entire prediction window. We observe that the DTD-Sim model outperforms both the
statistical and mechanistic baselines across all contexts at longer prediction horizons, where
h is one to six hours.

We used Euler’s method to perform the UVA-step implemented with Jax in order to propa-
gate derivatives. To optimize the parameters θ and λ we used adam (Kingma and Ba, 2014)
with a step size of 1e-4. A single Monte Carlo sample was found to adequately estimate
the stochastic gradient for each update, which incorporates all of the training observations.
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Figure 8: Additional synthetic meal comparisons.
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Figure 9: Additional synthetic meal comparisons.

We stop iterating the algorithm when the loss stops improving for 500 iterations — this
typically occurred after 10-15,000 iterations.
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