
Proceedings of Machine Learning Research 1–A7, 2020 Machine Learning for Healthcare

Predicting Drug Sensitivity of Cancer Cell Lines via
Collaborative Filtering with Contextual Attention

Yifeng Tao1,2,† yifengt@cs.cmu.edu

Shuangxia Ren3,4,† shr81@pitt.edu

Michael Q. Ding3 dingm@pitt.edu

Russell Schwartz1,5,∗ russells@andrew.cmu.edu

Xinghua Lu3,4,6,∗ xinghua@pitt.edu

1Computational Biology Department, School of Computer Science, Carnegie Mellon University
2Joint Carnegie Mellon-University of Pittsburgh Ph.D. Program in Computational Biology
3Department of Biomedical Informatics, School of Medicine, University of Pittsburgh
4Intelligent Systems Program, School of Computing and Information, University of Pittsburgh
5Department of Biological Sciences, Carnegie Mellon University
6Department of Pharmaceutical Science, School of Medicine, University of Pittsburgh

Pittsburgh, PA, USA

†Both authors contributed equally to this work.
∗To whom correspondence should be addressed.

Abstract

Accurate anti-cancer drug recommendations and the identification of essential biomarkers
for this task are crucial to precision oncology. Large-scale drug response assays on cancer
cell lines provide a potential way to understand the interplay of drugs and cancer cells.
In this work, we present CADRE (Contextual Attention-based Drug REsponse), a model
that accurately infers the response of cancer cell lines to a panel of candidate compounds
based on the omics profiles, such as gene expressions, of cancer cells. CADRE builds on
the framework of collaborative filtering, which provides robustness to the noise of biolog-
ical data by leveraging similarities within drugs and cell lines. It utilizes the contextual
attention mechanism to identify informative biomarkers of these cell lines, which boosts
prediction accuracy and affords interpretability of results. In addition, CADRE incor-
porates external knowledge of drug target pathways and co-expression patterns of genes
to further improve feature representations and model performance. Comprehensive eval-
uations of CADRE and competing models on two large-scale pharmacogenomic datasets
show its superiority in both prediction performance and interpretability. CADRE identifies
as vital biomarkers genes related to intracellular vesicles and signaling receptor binding,
shedding light on its translational potential in the clinical practice of cancer treatment.1

1. Code is available at https://github.com/yifengtao/CADRE.
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1. Introduction

Precise prediction of drug sensitivities of tumors is one of the essential aspects of person-
alized treatment of cancers, which requires clinicians and researchers to assign the best
potential anti-cancer drugs to individual patients (Prasad, 2016). With the rapid advance-
ment of high-throughput sequencing technologies in the past decade, large amounts of tumor
multi-omics data have become available at an acceptable cost (Reuter et al., 2015). However,
inter- and intra-tumor heterogeneities (Schwartz and Schäffer, 2017) make tumor resistance
to drugs a much more complex problem to resolve: Even cancer patients with the same
cancer type may have distinct prognoses with the same clinical intervention (Priedigkeit
et al., 2017). Furthermore, it is expensive and impractical to conduct systematic drug sen-
sitivity assays directly on human beings. Although there is still a gap between cell lines
and in vivo tumors, large-scale cancer-cell-line pharmacogenomic data (Yang et al., 2013;
Barretina et al., 2012) provide a reasonable basis for understanding how cells and drugs
interact and how inter-tumor heterogeneity can lead to distinct sensitivity profiles across
tumors.

Predicting the sensitivities of cell lines to a panel of potential molecules based on omics
data of the cell lines is challenging in three primary aspects. 1) Drug sensitivity data are
noisy and often contain many missing entries (Liu et al., 2018). Therefore the model
has to be robust, generalize well, and not otherwise overfit to the training data (Yuan
et al., 2016). 2) The relationship between the molecular profiles of cell lines (such as
gene expressions) and drug response is complex. Not every gene contributes equally to
the response. In addition, a few genes may interact with each other to generate complex
contextual effects (Zaitsev et al., 2019). 3) Cancer researchers and clinicians are especially
concerned about the interpretability and clinical implications of the models, with an
emphasis on how the critical biomarkers affect the final prediction results. Although deep
learning models can achieve good to excellent performance in predicting sensitivities (Ding
et al., 2018; Chiu et al., 2019), most of them behave like “black boxes” without achieving
balanced performance and interpretability.

To address the three essential challenges mentioned above in cell line resistance in-
ference, we proposed a model for accurate and interpretable drug sensitivity prediction,
which we called CADRE (Contextual Attention-based Drug REsponse). CADRE was
built on the framework of a type of classical machine learning model called collaborative
filtering (Schafer et al., 2007) to impute the sensitivities of untested cell lines to a panel of
known drugs using their molecular profiles, such as gene expressions (section 3.1). Collabo-
rative filtering captures shared features by jointly exploiting the similarities between drugs
as well as similarities between cell lines, alleviating the significant noise in the sensitivity
data (Wang et al., 2017). Furthermore, we developed and employed a contextual atten-
tion mechanism to identify the crucial inputs, capture the interactions between genes and
drug targets, and thus encode the cell line features from their expression profiles effectively
(See section 3.2-3.3 for implementation details). The attention mechanism is a family of
deep learning modules/components which has been shown to be effective in encoding input
features by assigning them different “attention weights” and thus further improving the
model performance in many applications, such as computer vision (Xu et al., 2015), natural
language processing (Yang et al., 2016), and computational biology (Tao et al., 2020a). Not
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only did contextual attention increase prediction accuracy by capturing the contextual
interactions of genes and drug targets, but it also improved the model interpretability
by assigning higher weights to the genes that have a more significant effect on drug response.
Although classical models such as random forest and linear models are well studied the-
oretically and have better interpretability compared with attention mechanism, attention
mechanism still improves both model interpretability and empirical performance in deep
learning. We refer readers to section 2.2 for details of how our approach is different from
both classical models and conventional neural network models.

Generalizable Insights about Machine Learning in the Context of Healthcare

CADRE is a novel machine learning model for drug resistance prediction. It provides
improved biological interpretability and potential translational biomarkers, compared with
other deep learning models (section 5.4), and achieves better performance, compared with
classical models such as collaborative filtering (section 5.2). The decisive improvements
come from the contextual attention mechanism we used to encode the cell line features
from gene expression levels (section 5.3). We utilized external knowledge to further boost
the model by transferring gene embeddings pretrained in an unsupervised manner on a large-
scale gene expression database (section 3.4,5.2). Our work could potentially be extended and
applied to other clinical decisions, e.g., cancer subtype classification and cancer prognoses
prediction (Chang et al., 2013), when the molecular information such as expression levels
and genomic alterations are available, and when both the explainability and performance
of the model are essential considerations in the task.

2. Related Work

2.1. Pharmacogenomic Datasets

An anti-cancer drug sensitivity dataset usually systematically measures the multi-omic
molecular profiles of a collection of cancer cell lines, such as RNA expressions, DNA muta-
tions, DNA copy number variations (CNVs), methylation levels, and protein abundances. It
also includes the experimental dose vs. the response curves of cell growth inhibition from a
panel of potential compounds. The NCI-DREAM challenge was one of the largest contests
that tried to draw a community effort to solve the problem of accurately predicting the
sensitivities of drugs in cancer cell lines (Costello et al., 2014). It contained response data
of 53 breast cancer cell lines to 28 compounds. NCI-60 was a more massive dataset that
contained the responses of 59 cell lines from various tissues to over 100k compounds (Shoe-
maker, 2006), providing an important resource for in vitro drug discovery. Cancer Genome
Project (CGP; Garnett et al., 2012), Cancer Cell Line Encyclopedia (CCLE; Barretina
et al., 2012), and Genomics of Drug Sensitivity in Cancer (GDSC; Yang et al., 2013) were
more balanced datasets, each containing hundreds of pan-cancer cell lines with sensitivity
data to tens or hundreds of compounds. The increased number of cell lines enabled further
investigation of the genomic impact on drug resistance. While it is hard to examine the re-
sponse of patients to different clinical options, The Cancer Genome Atlas (TCGA) collected
follow-up records of around 10k pan-cancer patients in the form of survival/recurrence in
response to given treatments (Chang et al., 2013).
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2.2. Drug Response Prediction Models

A few classical machine learning models were proposed to solve the drug response prediction
problem based on molecular profiles of cell lines, including ridge regression (Geeleher et al.,
2014), elastic net (Yuan et al., 2016), support vector machine (SVM; Dong et al., 2015),
random forest (Riddick et al., 2011), and Bayesian models (KBMTL; Gonen and Mar-
golin, 2014). Researchers also developed network-based models that incorporated external
knowledge of cell line similarities or drug similarities, e.g., CDCN (Wei et al., 2019) and
dual-layer network (Zhang et al., 2015). NCFGER (Liu et al., 2018), SRMF (Wang et al.,
2017), and KRL (He et al., 2018) were response prediction models based on collaborative
filtering (Schafer et al., 2007), a class of models widely used in the area of recommender
systems. Our model is different from NCFGER, which is neighbor-based, while CADRE
is model-based and is more robust to noise and missing values. Compared with SRMF
and KRL, CADRE considers the attention mechanism, which effectively encodes cell line
features and increases the interpretability.

More deep learning models have been proposed recently. Ding et al. (2018) showed that
simple neural networks such as multilayer perceptrons (MLPs) could be effective competitors
with lasso or elastic net (Yuan et al., 2016). CDRscan (Chang et al., 2018) explored various
architecture settings of MLPs to predict responses from cell line genomic data and drug
fingerprints. Both DeepDR (Chiu et al., 2019) and MOLI (Sharifi-Noghabi et al., 2019)
proposed MLP-based deep learning frameworks that used late integration to incorporate
multi-omic cell line data for sensitivity prediction. PaccMann (Oskooei et al., 2018) applied
attention mechanisms to the drug response prediction task using both gene expressions and
drug structures. Our work is different from theirs since CADRE focuses on predicting the
response of unknown cell lines to known drugs, instead of to unknown drugs as in PaccMann,
which is a harder task with usually much lower accuracy in practice.

3. Methods

3.1. Overall Architecture: Collaborative Filtering

The overall architecture of CADRE is collaborative filtering (figure 1a,b; Schafer et al.,
2007). Given a cell line c and a drug d, CADRE first maps the cell line and drug to two
feature vectors, which we call cell line embedding ec ∈ Rs and drug embedding ed ∈ Rs.
CADRE then predicts the probability that the cell line c will be sensitive to drug d through
the inner product and logistic function:

ŷc,d = σ (〈ec, ed〉) =
1

1 + exp(−eᵀced)
. (1)

We define W as all the model parameters to be optimized/trained, such as gene em-
beddings, drug embeddings, target pathway embeddings, and neural network weights (ta-
ble A1). At the training stage, we optimize the loss function:

`(ŷc,d, yc,d;W) = CrossEnt(ŷc,d, yc,d) +
λ2
2
· `2(W), (2)

where

CrossEnt(ŷc,d, yc,d) = − [yc,d · log ŷc,d + (1− yc,d) · log(1− ŷc,d)] (3)
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Figure 1: Diagram of the CADRE model. (a) The general goal of CADRE is to predict
the responses of cancer cell lines to a panel of given anti-cancer drugs based on
their gene expression profiles. (b) Given a pair of cell line c and drug d, CADRE
first extracts the gene embeddings of m expressed genes in the cell line e1, e2,
..., em and the drug embedding ed. Then it generates the cell line embedding ec
as the weighted sum of gene embeddings. Finally, the predicted response will be
σ(eᵀced). (c) CADRE generates the cell line embedding ec as a weighted sum of
its consisting gene embeddings. (d) CADRE calculates the attention weights α1,
α2, ..., αm through the contextual attention mechanism, which was implemented
as a sub neural network. It takes as input both the gene embeddings e1, e2, ...,
em and drug target pathway embedding ep.

is the cross-entropy between predicted sensitivity ŷc,d and ground truth sensitivity yc,d,
`2(W) is the `2-regularization term to prevent overfitting, λ2 is the weight decay coefficient.

The mapping from drug d to its drug embedding ed is direct, through a lookup table
of drug embeddings ED = {ed}d∈D, where D is the set of all the drugs in the dataset.
We considered a total of 3,000 most varied genes, and for each cell line c, we had a set
of m=1,500 genes that were highly expressed (section 4.3). Instead of a binary 3,000-
dimensional vector, the input of the CADRE and collaborative filtering models is similar
to the “bag of words”: the indices of the m expressed genes {1, 2, ...,m}. We then mapped
these gene indices into their corresponding gene embeddings e1, e2, ..., em using a lookup
table EG = {eg}g∈G , where G is all the set of all the genes we considered (|G| = 3,000), and
eg ∈ Rs. We chose the parameter 3,000 and 1,500 following previous work (Ding et al., 2018;
section 4.3). The major difference between CADRE and “vanilla” collaborative filtering is
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in how to calculate the cell line embedding ec from the gene embeddings e1, e2, ..., em. As
we will introduce in section 3.2-3.3, SADRE (a CADRE variant) and CADRE incorporate
attention mechanism to calculate ec. In vanilla collaborative filtering, however, we naively
take the sum (or average) of all the gene embeddings e1, e2, ..., em:

ec =
∑m

i=1
1 · ei = 1 · e1 + 1 · e2 + ...+ 1 · em. (4)

We added a dropout layer (Srivastava et al., 2014) after the ec to reduce the model com-
plexity to prevent overfitting:

ec = dropout(ec; ρ), (5)

where ρ ∈ [0, 1] is the dropout rate. We use “vanilla” to refer to the standard collaborative
filtering model, in contrast to more advanced models, such as CADRE in this work, which
also build on the framework of collaborative filtering.

3.2. SADRE: Self-Attention-based Drug Response

Instead of summing up all the m gene embeddings with equivalent weights in the vanilla
collaborative filtering (section 3.1; equation 4), we assumed that different genes should have
different importance when we aggregate them into a single cell line embedding (figure 1b,c):

ec =
∑m

i=1
αi · ei = α1 · e1 + α2 · e2 + ...+ αm · em. (6)

We could calculate the weights α1, α2, ..., αm (αi > 0, i = 1, 2, ...,m) through various
attention mechanisms (Yang et al., 2016; Oskooei et al., 2018), thus enabling a better
feature representation of the cell line from its composing gene embeddings. We developed
two attention-based collaborative filtering models in this paper: SADRE and CADRE.
CADRE uses a slightly different attention mechanism from SADRE, and will be described
in section 3.3. In SADRE (Self-Attention-based Drug REsponse), the attention weights
α1, α2, ..., αm are the outputs of all the gene embeddings e1, e2, ..., em using a Self-Attention
function:

α1, α2, ..., αm = Self-Attention (e1, e1, ..., em) . (7)

This self-attention function captures the contextual impact of other expressed genes when
we calculate the weight of i-th gene αi: it can not be solely calculated using ei. We
implemented the Self-Attention function via a sub neural network (figure 1d; Yang et al.,
2016), which first calculates the unnormalized attention weights:

βi,j = θᵀj tanh(Wei), i = 1, 2, ...,m, j = 1, 2, ..., h, (8)

where W ∈ Rq×s, θj ∈ Rq are trainable model parameters. Then we normalize them:

α1,j , α2,j , ...αm,j = softmax(β1,j , β2,j , ...βm,j), j = 1, 2, ..., h, (9)
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where h is the number of attention heads (discussed at the end of this paragraph). The
softmax normalization is the key step of attention mechanisms to capture the interactions
of all the input genes. The softmax function is defined as:

αi,j = exp (βi,j)
/∑m

i′=1
exp

(
βi′,j

)
, i = 1, 2, ...,m. (10)

The final weights of the self-attention mechanism are:

αi =
∑h

j=1
αi,j = αi,1 + αi,2 + ...+ αi,h, i = 1, 2, ...,m. (11)

Note that in equation 8-11 we implemented the multi-head self-attention mechanism with
h attention heads, instead of single-head self-attention. We used multi-head because single-
head often pays most weight to a single gene embedding, while in practice, a few genes
might be all-important, which could be selected through multiple independent heads, thus
improving both the performance and interpretability of the model.

3.3. CADRE: Contextual Attention-based Drug Response

Although self-attention was already able to capture the contextual effects from other ex-
pressed genes to encode the cell line embedding, we hypothesized that by integrating the
contextual information of drug targets, we could further improve the performance, lead-
ing to CADRE (Contextual Attention-based Drug REsponse). Given the drug d and its
target pathway p, instead of just using gene embeddings to calculate attention weights
(equation 7), CADRE uses target pathway embedding ep as well:

α1, α2, ..., αm = Contextual-Attention (e1, e1, ..., em, ep) . (12)

All the steps to calculate attention weights in CADRE/Contextual-Attention are the same
as SADRE/Self-Attention (equation 9-11), except equation 8, where CADRE calculates the
unnormalized contextual-attention weights in the following way (figure 1d):

βi,j = θᵀj tanh(Wei + ep), i = 1, 2, ...,m, j = 1, 2, ..., h, (13)

where ep ∈ Rq is the target pathway embedding of the pathway p. We mapped it from
the lookup table of pathway embeddings EP = {ep}p∈P , where P is the set of all possible
pathways. Essentially, the drug target embedding ep reflects the functional similarities of
drugs, i.e., if two drugs share the same target, their target embeddings should be similar,
leading to a similar function to calculate the attention weights from gene embeddings (equa-
tion 13). It is possible to directly use the drug embeddings here by replacing ep with V ed
in equation 13, where V ∈ Rq×s is a trainable model parameter. However, we did not find
that this significantly improves performance.

3.4. Pretraining Gene Embeddings

Transfer learning research in the area of natural language processing and computational
biology showed that word embeddings (Mikolov et al., 2013; Tao et al., 2019a) or gene
embeddings (Tao et al., 2020a) pretrained on large-scale external unlabeled datasets could
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improve related supervised learning tasks. To integrate the external knowledge of the co-
expression pattern of genes, we utilized gene embeddings EG = {eg}g∈G pretrained on a
large-scale Gene Expression Omnibus (GEO; Barrett et al., 2012) database. It is also possi-
ble to utilize other genetic association databases (Wang et al., 2019). The 200-dimensional
gene embeddings were pretrained using the gene2vec algorithm (Du et al., 2019), which is a
variant of the word2vec algorithm (Mikolov et al., 2013) in the scenario of gene expression.
The co-expressed genes would also be close in the pretrained gene embedding space, and thus
had a similar effect to the model. The full CADRE model directly used the fixed pretrained
gene embeddings EG and did not optimize them at the time of training. If gene embeddings
were randomly initialized and trained, the model reduced to CADRE∆pretrain. To make a
fair comparison, we also used fixed pretrained gene embeddings in the collaborative filtering
and SADRE models.

3.5. Implementation and Training Procedure

We implemented the CADRE model using PyTorch (Paszke et al., 2019). We trained the
model using the one cycle policy with mini-batch momentum gradient descent on an AWS
GPU instance g4dn.12xlarge (Smith, 2018). To facilitate a balanced training process, we
used a training batch size of 8× |D|, where D is the set of all the drugs. One cycle policy
enabled fast convergence while preventing overfitting (superconvergence) by adjusting the
learning rate and momentum. In the first 45% training steps (warm-up), we increased
the learning rate linearly from η/10 to η, and decreased the momentum linearly from 0.95
to 0.85. In the following 45% training steps (cool-down), we decreased the learning rate
linearly from η to η/10, and increased the momentum linearly from 0.85 to 0.95. In the
last 10% training steps (annihilation), we decreased the learning rate linearly from η/10 to
η/100, while keeping the momentum as 0.95. See section 5.1 for our tuning and evaluation
protocols. The tuned hyperparameters of each dataset, such as maximum learning rate η,
are available in table A2. We summarize the trainable/optimizable and fixed parameters of
each model in table A1.

4. Datasets

4.1. Cohort Selection

We focused on two large-scale pharmacogenomic datasets: GDSC (Yang et al., 2013) and
CCLE (Barretina et al., 2012). Both datasets included drug response data between hundreds
of cell lines and tens/hundreds of anti-cancer drugs. We extracted the transcriptome data,
i.e., the expression profiles of around 20k genes, as they were shown in previous multi-
omics research to be the most dominant features compared with genomic and epigenomic
data (Chiu et al., 2019; Sharifi-Noghabi et al., 2019). We also collected and summarized
the targeted pathways of drugs of both datasets. The statistics of processed datasets are
shown in table A3. Interested readers may refer to the original papers for more detailed
characteristics of the two datasets (Yang et al., 2013; Barretina et al., 2012). We also list
the data source in table A4.
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4.2. Drug Sensitivity Discretization and Missing Value Imputation

GDSC and CCLE released both the half-maximal inhibitory concentration (IC50) and area
under the curve (AUC)/activity area (AA) as the single continuous response value for each
pair of cell line and drug. We discretized the AA into two categories of sensitive (one) vs. re-
sistant (zero) using the waterfall algorithm for each drug (Barretina et al., 2012), following
parameters in the previous work (Ding et al., 2018). Continuous IC50 (Chiu et al., 2019)
and continuous AA (Barretina et al., 2012) were also widely used drug sensitivity measure-
ments in the literature. However, AA is a more robust metric of sensitivity compared with
IC50, which is crucial in our case since drug sensitivity data are usually noisy. In addition,
binary sensitivity has a better clinical significance compared with the continuous one.

Although most of the response data of CCLE are available, 20% of response entries in
the GDSC dataset are missing. At the time of training the model, if the sensitivity of a
cell line to a drug was missing, we filled the missing value with the mode of the available
sensitivities to this specific drug. At the time of evaluation, we skipped the missing values.
There might exist alternative strategies, such as imputation with the mode of the k -nearest
neighbors (Beretta and Santaniello, 2016). Another potential solution would be to modify
the models by using a mask at the training phase to omit the unknown objective loss that
resulted from them (Tao et al., 2019b). However, our preliminary experiments found that
filling the values at the training stage could improve the performance on the validation set
slightly.

4.3. Gene Expression Data Preprocessing

We downloaded the RNA expressions of cell lines in both GDSC and CCLE datasets. We
calculated the variance of each gene using the quantile-normalized values in log-scale, and
selected the 3,000 genes that had the largest variances. Within each cell line, we then
annotated the top 1,500 highly expressed genes with ones, and the remaining genes with
zeros. The parameters 3,000 and 1,500 were inherited from previous research (Ding et al.,
2018).

4.4. Drug Target Pathway Extraction

We directly extracted the “target pathway” of each drug in the GDSC dataset. For the
CCLE dataset, 15 out of its 24 drugs were shared with the GDSC dataset. Therefore, we
used the same “target pathways” values for these 15 drugs in CCLE. For the remaining 9
drugs, we used their “class” as target pathways. One can find the mapping table of the
drug target pathway of the CCLE dataset in table A5.

5. Results

5.1. Evaluation Approach

We trained and evaluated the models on the two datasets separately. For each dataset, we
split the cell lines into three parts: training, validation, and test sets with a ratio of 60%,
20%, and 20%. All the models compared in this work shared the same split of datasets.
We manually tuned all the models using the training and validation sets to optimize the
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Table 1: Performance of different models and variants on the GDSC and CCLE datasets.
We calculated the means and standard deviations from three repeated experi-
ments. CADRE, SADRE, and collaborative filtering each utilized pretrained gene
emebeddings. CADRE outperformed all the other competing models using four
different metrics, validating its superior performance from the contextual attention
mechanism and pretrained gene embeddings.

Dataset Model F1 Score Accuracy AUPR AUROC

GDSC DeepDR 62.1±0.55 78.4±0.74 67.2±0.91 81.8±0.92
Collaborative filtering 60.9±0.18 76.9±0.37 67.0±1.36 81.2±0.13
SADRE 62.9±0.20 78.2±0.25 68.7±1.43 82.9±0.29
CADRE∆pretrain 62.6±0.64 77.4±0.25 69.8±2.53 82.3±0.46
CADRE 64.3±0.22 78.6±0.34 70.6±1.30 83.4±0.19

CCLE DeepDR 51.5±2.95 77.8±0.39 53.5±2.80 78.5±1.09
Collaborative filtering 48.6±1.26 77.6±0.42 48.9±1.10 78.6±0.52
SADRE 50.1±1.61 77.5±0.31 56.4±2.02 78.7±0.80
CADRE∆pretrain 50.8±1.95 76.6±0.71 49.7±2.85 74.1±0.98
CADRE 54.4±2.15 79.1±0.56 60.0±2.43 80.9±0.25

overall F1 score (See table A2 for tuned parameters). After we tuned the hyperparameters,
we finally trained the models on the training and validation sets, and evaluated on the test
set. Since the outputs of the models were slightly different across each run, we retrained
and evaluated three times, and reported the mean and standard deviation. At the time
of evaluation, we utilized multiple metrics in addition to the F1 score, including accuracy,
area under the precision-recall curve (AUPR), and area under ROC (AUROC). AUPR and
AUROC are more comprehensive evaluation metrics, which take as input the predicted
probability instead of binary predictions, in contrast to the F1 score and accuracy.

5.2. CADRE Outperforms Competing Models

We compared the overall performance of CADRE (section 3.3) with other competing mod-
els and its ablated variants, including DeepDR (Chiu et al., 2019), vanilla collaborative
filtering (section 3.1), SADRE (section 3.2), and CADRE∆pretrain (CADRE without pre-
trained gene embeddings; section 3.4). DeepDR was previously shown to outperform both
simple neural networks and classical models such as linear regression and SVM (Chiu et al.,
2019). Note that CADRE, SADRE, and collaborative filtering each utilized pretrained gene
embeddings in our experimental setting (table A1). DeepDR did not use pretrained gene
embeddings, since we did not find it helpful in the preliminary experiments. As one can
see from table 1, CADRE outperforms all these other models and variants on both GDSC
and CCLE datasets. The attention mechanisms can significantly improve the performance
of collaborative filtering. The contextual attention performs better than the self-attention,
indicating the improved performance brought by the extra contextual information from the
drug target pathway. The use of pretrained gene embeddings is also a crucial module for
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the superior performance of CADRE, validating the transferred knowledge from external
databases.

5.3. Effective Attention-Encoded Cell Line Representation Contributes to the
Major Improvements of Performance

Using aggregated and flattened predictions and ground truth sensitivities, we showed the
overall superior performance of CADRE over competing models (table 1). However, we were
also concerned about the disentangled performance of individual cell lines to all drugs (per-
cell-line performance), or individual drugs to all cell lines (per-drug performance). Since
different cell lines or drugs could have distinct performances, we compared the distributions
of their performances instead of single averaged values. As one can see from figure 2, all the
methods had comparable and reasonably high AUPR per cell line. However, the attention-
based models such as SADRE and CADRE significantly outperformed other models in per-
drug ARPR. This indicated that the major improvements of the attention-based models
might come from the useful cell line representations built by attention mechanisms, such
that the cell lines with various expression profiles were appropriately distinguished.

DeepDR Collaborative filtering                  SADRE                         CADREΔpretrain CADRE

a                                          b                                         c                                       d

Figure 2: The distributions of dissected AUPR per cell line and AUPR per drug in different
models on both GDSC and CCLE datasets. The per-cell-line performances of all
models achieved reasonable high levels. Meanwhile, the major improvements of
CADRE and SADRE came from the per-drug performance, indicating the well-
designed attention mechanisms might encode the cell lines more effectively, so
that different cell lines were more easily distinguished, leading to high per-drug
AUPR.

To validate that attention-encoded cell line embeddings are more effective than non-
attention-encoded vanilla cell line embeddings, we calculated the “correlation” of cell line
embeddings and the origins of cell lines using “NN accuracy”. NN accuracy is defined as
the following expectation:

NN accuracy = Ec′:ec′=NN(ec)

[
Tissue(c′) = Tissue(c)

]
, (14)

where Tissue(c) outputs the tissue of cell line c and NN(ec) returns the closest gene em-
bedding to ec using unnormalized cosine similarity. We approximated this expectation by
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iterating c over all the cell lines in the dataset. The NN accuracy reflects how the distri-
bution of cell line embeddings is consistent with their tissues. We focused on the GDSC
dataset, since it had a larger sample size, and provided comprehensive annotations of the
cell lines. As one can see from table A6, the attention-based cell line embeddings had a
better correlation with the tissue type (NN accuracy=36.1%), compared with vanilla cell
line embeddings (NN accuracy=20.2%) and random cases (shuffled and repeated for five
times; NN accuracy=12.9±2.1%). The t-SNE plot (van der Maaten and Hinton, 2008) of
attention-encoded cell line embeddings revealed distinct clusters of embeddings within the
same tissue, and similar embeddings across different tissues (figure 3a). In contract, non-
attention-encoded cell line embeddings only reflected similarities of tissues (figure 3b), and
did not discover the similar subgroups observed in attention-encoded embeddings.

Encoded w/ attention Encoded w/o attentiona                                           b

Figure 3: t-SNE visualization of cell line embeddings in the GDSC dataset. (a) CADRE-
encoded cell line embeddings. The groups within the same tissue revealed the
potential subtypes of the cancer that exhibited distinct drug response profiles.
At the same time, even cell lines from different tissues can merge into the same
clusters and thus share similar responses. (b) Cell line embeddings encoded
without attention mechanism. These mainly reflected tissue-specific expression
patterns rather than differences in response profiles, without finding subgroups
of cell lines as in attention-encoded embeddings.

5.4. CADRE Identifies the Critical Biomarkers Related to Drug Resistance

CADRE assigned the heaviest weights to the genes that were most important to the drug
response, providing a way to identify critical gene expression markers and biological pro-
cesses. We extracted the attention weights from CADRE and counted expression frequency
of the genes, and plotted the normalized attention weights vs. expression frequency. We
shuffled the attention weights randomly 1,000 times to infer the significantly attended genes
with a p-value threshold of 0.01 (Zaitsev et al., 2019). We mainly focused on the GDSC
dataset due to its larger sample size. In general, the essential genes identified by CADRE
are independent of the expression frequency (figure 4). The frequently expressed genes did
not necessarily receive higher attention weights.
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We then conducted Gene Ontology (GO) enrichment analysis on these significant genes (Mi
et al., 2013). Two primary cell activities emerged (table A7). First, functions related to
exporting the molecules from the cells were enriched, which is consistent with previous re-
search that many cancer cells acquired drug resistance by expelling the compounds using
microvesicles (Muralidharan-Chari et al., 2016). Secondly, functions related to signaling re-
ceptor binding were enriched, reflecting the fact that a lot of anti-cancer drugs are targeted
to the receptors of specific signaling pathways such as EGFR and RTK (Yang et al., 2013).
The clinically actionable genes of these CADRE-identified biomarkers could be potential
targets of anti-cancer compounds for future exploration.
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Figure 4: Landscape of the normalized contextual-attention weights of genes and their ex-
pression frequencies in the GDSC dataset. A higher expression frequency did not
guarantee a higher attention weight.

6. Discussion

Personalized medicine in oncology requires that researchers and clinicians have tools to
suggest effective anti-cancer drugs based on complex molecular profiles of the tumor and
noisy pharmacogenomic assays, and to provide reasonable explanations for the recommen-
dations. In pursuit of this goal, we created CADRE, an interpretable machine learning
model that accurately predicted drug sensitivities of cancer cell lines from their expression
levels. CADRE was built upon collaborative filtering, which is capable of dealing with noisy
response assay data. The attention mechanism of CADRE improved both interpretability
and performance of the model, by capturing the interactions and contextual effects of genes
and drugs, and by encoding a better representation of cell lines from raw expression profiles.
What is more, CADRE utilized gene representations transferred from an external database
to boost its performance further. Through extensive evaluations and comparisons on the
two primary pharmacogenomic datasets, we validated the superior performance of CADRE
over competing models. Our results indicate that the genes assigned significant attention
are involved in biological processes that can be expected to impact cellular responses to
the presence of drugs. Thus these genes are potential novel biomarkers for designing more
efficient test panels than whole-genome-scale sequencing.
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Limitations and Future Directions Our model considered the simplified scenario of
cancer cell lines, where each sample consists of only one cell population. However, a tumor
tissue from a single cancer patient usually consists of multiple subpopulations, each exhibit-
ing a distinct molecular profile (Schwartz and Schäffer, 2017; Tao et al., 2020b). A clinically
applicable anti-cancer drug resistance model should not only consider the inter-tumor differ-
ences between cell lines or patients (CADRE considered the similarities/differences between
cell lines by grouping them into subtypes in the embedding space; figure 3a), but also take
into account and deconvolve the intra-tumor heterogeneity of the cell populations within
the same tumor tissue. Network matching (Liu et al., 2020) or single-cell techniques (Lei
et al., 2020) could be promising directions in bridging both sides of in vitro cancer cell lines
and in vivo tumors. A few other promising directions also warrant pursuing in the future.
We mainly validated the effectiveness of CADRE using RNA expression data of cell lines in
this work. However, we expect that models similar to CADRE, with slight modifications,
could apply to genomic or epigenomic data, or the combination of these omic data in the
future. Although we incorporated the knowledge of drugs through their target pathways,
other drug representations such as drug embeddings well-represented from their structures,
such as inferred from fingerprints or SMILES, might further improve our model (Zhang
et al., 2015). Finally, since CADRE integrates pathway information to capture the contex-
tual information, it would be helpful to conduct a case study of the essential genes captured
by attention mechanism in specific drug target pathways, in addition to the aggregated
analysis (section 5.4; figure 4).
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Appendix

Table A1: Trainable/optimizable and fixed parameters in the different models. If the gene
embeddings EG were pretrained, it would be fixed during training. The path-
way embeddings EP in both the CADRE∆pretrain and CADRE models were
randomly initialized by default in PyTorch and learned from the data. See sec-
tion 3.1-3.3 for details and definitions of these models and parameters.

Model Trainable parameters (W) Fixed parameters

Collaborative filtering ED EG
SADRE ED ∪W ∪ {θj}hj=1 EG
CADRE∆pretrain ED ∪ EG ∪ EP ∪W ∪ {θj}hj=1 ∅
CADRE ED ∪ EP ∪W ∪ {θj}hj=1 EG
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Table A2: Tuned hyperparameters of CADRE model in GDSC and CCLE datasets. See
section 3 for definitions and details of the hyperparameters.

Dataset

Hyperparameter GDSC CCLE

training batch size 8×260 8×24
training steps 48k 96k
maximum learning rate η 0.3 0.05
number of attention heads h 8 8
weight decay λ2 3e-4 3e-4
dropout rate ρ 0.6 0.5
drug/gene/cell-line embedding dimension s 200 200
drug target pathway embedding dimension q 128 100
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Table A3: Statistics of the two drug response datasets used in the work.

Dataset # cell lines # drugs (|D|) # pathways (|P|) % missing % positive

GDSC 846 260 25 18.2% 32.2%
CCLE 409 24 11 3.5% 24.8%
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Table A4: Downloading websites and file names of GDSC and CCLE data used in the work.

Dataset Type URL/Filename

GDSC Download URL www.cancerrxgene.org/downloads/bulk_download

Drug sensitivity GDSC2_fitted_dose_response_25Feb20.xlsx

Gene expression Cell_line_RMA_proc_basalExp.txt

Target pathway Drug_listSun.csv

CCLE Download URL data.broadinstitute.org/ccle

Drug sensitivity CCLE_NP24.2009_Drug_data_2015.02.24.csv

Gene expression CCLE_RNAseq_rsem_genes_tpm_20180929.txt

Target pathway CCLE_NP24.2009_profiling_2012.02.20.csv
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Table A5: Cleaned mapping table from drugs to their target pathways in CCLE dataset.

Drug Target pathway

Erlotinib EGFR signaling
Lapatinib EGFR signaling
PHA-665752 RTK signaling
PF-2341066 RTK signaling
TAE684 RTK signaling
Vandetanib Other kinase inhibitor
Nilotinib ABL signaling
AZD0530 RTK signaling
Sorafenib RTK signaling
TKI258 Other kinase inhibitor
PD-0332991 Cell cycle
AEW541 Other kinase inhibitor
RAF265 Other kinase inhibitor
PLX4720 ERK MAPK signaling
PD-0325901 ERK MAPK signaling
AZD6244 ERK MAPK signaling
Nutlin-3 p53 pathway
LBW242 Other
17-AAG Protein stability and degradation
L-685458 Other
Panobinostat Other
Paclitaxel Mitosis
Irinotecan Other cytotoxic
Topotecan Other cytotoxic
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Table A6: NN accuracy of differently encoded cell line embeddings with respect to tis-
sue type. CADRE-encoded cell line embeddings improved the NN accuracy by
around 80% compared with the embeddings encoded without attention, indicat-
ing the attention mechanism enabled the cell line embeddings to achieve a higher
correlation with their corresponding tissues.

Cell line embedding NN accuracy (%)

Random 12.9±2.1
Encoded w/o attention 20.2
Encoded w/ attention 36.1
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Table A7: Enriched biological functions of significantly weighted genes in GDSC dataset
(red dots in figure 4). Genes related to intracelluar vesicles exporting compounds
from cells, and signaling receptor bindings were heavily picked by CADRE.

GO domain Enriched functions FDR

biological process export from cell 2.59e-3
biological process secretion 2.84e-4
biological process leukocyte activation 2.13e-2
molecular function signaling receptor binding 6.24e-3
cellular component intracelluar vesicle 9.64e-3
cellular component vesicle lumen 4.79e-2
cellular component extracellular region 1.05e-3
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