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Background. 
The analysis of medication orders using machine learning has either focused on single orders [1-3], or on the                  
prediction of future orders for a patient [4-6]. ​To our knowledge, no study has attempted to detect anomalies in lists of                     
currently active medications for a patient (pharmacological profiles). For this purpose, we propose an adaptation of                
GANomaly [7], which is an adversarially-trained autoencoder. The general idea is to learn a latent space in such way                   
that anomalies can be identified by computing the loss between latent representations from two encoders respectively                
taking as input the original data and its reconstruction (encoder loss). The practical use of this model would be to                    
identify profiles most likely to contain anomalies and triage them for pharmacist review, in order to reduce the                  
cognitive burden of the medication order review process. In its current state, this process involves pharmacists                
reviewing a majority of profiles containing no errors or problems [8-13]. The objectives of this study were to                  
determine the feasibility of this technique. 
Methods. 
The dataset used for this study consists of all medication orders placed between 2005 and 2018 inclusively, contained                  
in the pharmacy database of CHU Sainte-Justine, a tertiary-care mother-and-child academic hospital center located in               
Montreal, Canada. Access to the data was authorized in conformity with local requirements. We preprocessed the data                 
to reconstruct pharmacological profiles, defined as sets of active medications for a patient at any time point where no                   
order was placed in the following hour. These were represented as multi-hot vectors. The dataset does not include                  
labels as to the atypical nature of orders or profiles. For this reason, we selected an unsupervised autoencoder-based                  
GAN technique focused on anomaly detection, namely GANomaly. Given the binary nature of the data, we adapted                 
GANomaly by replacing the L1 loss by a binary crossentropy contextual loss. The original technique assumes that the                  
dataset would include only samples without anomalies. However, we hypothesized that the large proportion of orders                
following common patterns would allow a properly calibrated model to yield higher encoder losses for atypical                
profiles. 
Data from years 2005 to 2017 (inclusively), that is 989,766 sets containing (mean ± std) 9.43 ± 6.88 drugs derived                    
from 236,429 patient encounters including 4329 different drugs, was used for training and validation, leaving 73,407                
sets of 10.11 ± 7.56 drugs from 2018 for testing. As a starting point, we seeked to establish a base autoencoder                     
architecture that demonstrated a capacity to reconstruct the multi-hot vectors with more than 80% accuracy when                
training on a single year (2014, 2015, or 2016) and validating on the next year. Since published literature suggests that                    
there may be data drift through time on this type of data [14], we verified this effect with 3-fold cross-validation, using                     
years 2015, 2016 and 2017 as validation splits and training on the preceding 1 to 10 years. Based on results from an                      
in-house preliminary study where pharmacists flagged about 10% of orders as atypical, we then tuned the autoencoder                 
architecture until we reached a proportion of orders predicted as atypical (i.e. appearing in the original input but absent                   
from the reconstruction) close to 10%. The adversarial training hyperparameters were tuned following the same               
cross-validation scheme. We finally performed an adversarial training of the resulting autoencoder model and              
evaluated it on the test set. 
Results. 
The optimal autoencoder architecture was composed of 3 dense layers (size 256, 64 and 256), with SELU activation                  
and a dropout ratio of 0.1. This structure yielded a (mean ± std) validation reconstruction accuracy of 88.8 ± 1.1%.                    
Increasing the training data volume up to 10 years consistently improved performance. The optimal discriminator               
structure was 2 dense layers (size 128 and 64) with ReLU activation, batch normalization, and a dropout ratio of 0.1.                    
Adversarial training was performed using the Adam optimizer with a learning rate of 10​-6 ​for the discriminator and 10​-3                   
for the adversarial model, and a batch size of 256. The differences between the encoder and discriminator and the                   
reduced discriminator learning rate helped prevent mode collapse. Loss weights were 100 for contextual loss, 1 for                 
adversarial loss, and 2 for encoder loss. The final model was trained for 21 epochs based on early stopping from                    
validation loss. On the test set, this yielded a reconstruction accuracy of 0.87, an area under precision-recall of 0.88,                   
and 11% of orders predicted as atypical. The lowest median encoder loss per profile was in departments which follow                   
the most predictable patterns with a large proportion of orders being protocolized (e.g. nursery, obstetrics, NICU).                
Conversely, higher encoder losses were observed in departments which more frequently treat patients with complex               
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pharmacological profiles (e.g. PICU, long term care, oncology). A pharmacist reviewed 50 samples per department               
from the test set, which qualitatively showed that pharmacological profiles with a low encoder loss corresponded well                 
to routine orders and protocols. 
Conclusion. 
At this point only unsupervised training and evaluation was performed. The adapted GANomaly is currently being 
evaluated in a prospective study comparing pharmacists’ evaluation of medication profiles with model predictions.  
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