Proceedings of Machine Learning Research 126:1-22, 2020

Machine Learning for Healthcare

Time-Aware Transformer-based Network for Clinical Notes

Dongyu Zhang

Data Science Program
Worcester Polytechnic Institute
Worcester, MA, USA

Jidapa Thadajarassiri
Data Science Program
Worcester Polytechnic Institute
Worcester, MA, USA

Cansu Sen

Department of Computer Science
Worcester Polytechnic Institute
Worcester, MA, USA

Elke Rundensteiner
Department of Computer Science
Worcester Polytechnic Institute
Worcester, MA, USA

Series Prediction

DZHANG5QWPI.EDU

JTHADAJARASSIRIQWPI.EDU

CSEN@QWPI.EDU

RUNDENST@QWPI.EDU

Abstract

A patient’s clinical notes correspond to a sequence of free-form text documents gener-
ated by healthcare professionals over time. Rich and unique information in clinical notes
is useful for clinical decision making. In this work, we propose a time-aware transformer-
based hierarchical architecture, which we call Flexible Time-aware LSTM Transformer
(FTL-Trans), for classifying a patient’s health state based on her series of clinical notes.
FTL-Trans addresses the problem that current transformer-based architectures cannot han-
dle, which is the multi-level structure inherent in clinical note series where a note contains a
sequence of chucks and a chuck contains further a sequence of words. At the bottom layer,
FTL-Trans encodes equal-length subsequences of a patient’s clinical notes (“chunks”) into
content embeddings using a pre-trained Clinical BERT model. Unlike Clinical BERT, how-
ever, FTL-Trans merges each content embedding and sequential information into a new
position-enhanced chunk representation in the second layer by an augmented multi-level
position embedding. Next, the time-aware layer tackles the irregularity in the spacing of
notes in the note series by learning a flexible time decay function and utilizing the time
decay function to incorporate both the position-enhanced chunk embedding and time in-
formation into a patient representation. This patient representation is then fed into the
top layer for classification. Together, this hierarchical design of FTL-Trans successfully
captures the multi-level sequential structure of the note series. Our extensive experimental
evaluation conducted using multiple patient cohorts extracted from the MIMIC dataset
illustrates that, while addressing the aforementioned issues, FTL-Trans consistently out-
performs the state-of-the-art transformer-based architectures up to 5% in AUROC and 6%
in Accuracy.

© 2020 D. Zhang, J. Thadajarassiri, C. Sen & E. Rundensteiner.
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1. Introduction

Background. Clinical notes, written by healthcare workers, are rich resources of a patient’s
health status. Expert insights and observations about patients in these documents can be
tremendously valuable for supporting decisions on clinical diagnosis. Recently, machine
learning models are being developed to support such clinical decision making by exploiting
this treasure trove of clinical notes (Grnarova et al., 2016; Dubois et al., 2017; Boag et al.,
2018; Huang et al., 2019; Alsentzer et al., 2019). Clinical notes naturally have a multi-
level sequential structure. Namely, they correspond to a sequence of documents created
over time with each document itself consisting of a sequence of words. Further, the actual
timing, relative and absolute, of these notes themselves can hold the key to insights into
the patient’s progression related to a disease or its treatment.

Figure 1 depicts an example for three patients, where the note contents for all three
patients are the same. However, the creation time and the chronological order of the notes
differ. In our example, a model that only considers the content of the notes will treat
these three patients similarly since their notes contain exactly the same content. Thus,
this model would predict the same outcome for these three patients and fail to deliver their
actual outcome (survived for the first patient and died for the other two patients). Another
model that improves in capturing sequential information but without considering the time of
occurrence will be able to distinguish between the second patient and the other two patients.
However, this model will still suffer in the failure of distinguishing the first patient from the
third patient in this case. Thus, we postulate that both sequential and temporal knowledge
must also be incorporated to design an effective model for clinical prediction tasks.

State-of-the-Art. Many NLP techniques such as bag of words (BOW) or word2vec
have been applied to clinical note prediction (Boag et al., 2018). However, they produce
a patient representation that does not capture the language dynamics and sequential nor
the contextual information of words. A hierarchical attention model has been proposed to
utilize the nested sequential structure of clinical note sequences (Sen et al., 2019). However,
recently, transformer-based architectures, over and over, have shown superior performance
over recurrent architectures for many NLP tasks (Vaswani et al., 2017; Devlin et al., 2018;
Radford et al., 2018, 2019; Lan et al., 2019; Yang et al., 2019). Inspired by these develop-
ments, recently, Clinical BERT (Huang et al., 2019; Alsentzer et al., 2019) has been designed
for medical NLP problems. It is an application of the BERT model (Devlin et al., 2018)
pre-trained on a clinical corpus from the MIMIC-III dataset (Johnson et al., 2016). BERT-
based models enforce a length constraint on the input text. Clinical BERT, thus, splits notes
into equal length subsequences (“chunks”). It generates a prediction for each chunk and
then aggregates these predictions together to compute the patient-level prediction. How-
ever, this approach disregards the interrelations among clinical notes and their chunks. It
also loses knowledge about the multi-level sequential information inherent to the series of
clinical notes.

Challenges. The utilization of clinical note sequences for generating a patient-level
decision faces the following challenges:

o Complex interrelations among clinical notes and their chunks: BERT-based methods
(Huang et al., 2019; Devlin et al., 2018) impose an input text-length limitation. In an
attempt to utilize information, a natural approach is to split notes into chunks and
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Figure 1: Examples of major changes in patients’ states from minor variants of clinical note

series. The three patients associate with the same content but distinct order and
time of occurrence. Only the first patient survived while the others passed away.

then use these as input, as done by ClinicalBERT (Huang et al., 2019). However,
in doing so, they lose the information about which chunk belongs to which note.
Yet, this information can be crucial because chunks from the same note represent the
patient’s condition at a certain moment and together they supplement each other’s
information to form a complete picture of a patient at this moment. Hence, capturing
the interrelations of a note with its respective chunks is necessary for making accurate
clinical predictions.

o Multi-level sequential structure: Clinical note series by nature constitute a multi-level
sequential structure. That is, they do not only correspond to a series of notes but also
each note is composed of a sequence of words. Moreover, the necessity of chucking
to incorporate arbitrarily long texts furthermore generates another hierarchical level
into the clinical note data. This multi-level sequential structure is lost by current
state-of-the-art methods that directly feed chunks into a model.

e Unknown temporal importance: In Figure 1, the order and the content of the clinical
notes are exactly the same for the first and third patient. Yet the final outcome of
these two patients differs dramatically. This implies that the temporal information
plays an important role in predicting patients’ outcomes. Thus an ideal model must
have a time-aware design. However, the relative temporal importance of medical
events to clinical outcome is unknown. Thus, a time-aware design is needed capable
flexibly capturing the patterns of temporal importance.

Proposed Method. To overcome these challenges, we propose a novel hierarchical

model structure, FTL-Trans!, to learn patient representations from clinical notes. Our

1. FTL-Trans source code available at https://github.com/zdy93/FTL-Trans
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model design takes the interrelations among chunks and notes into account. Further, FTL-
Trans leverages both the time and multi-level sequential information inherent in clinical
notes. FTL-Trans consists of four successive layers: (1) Chunk Content Embedding Layer
encodes the text of each chunk into a content embedding utilizing a transformer-encoder
layer, initialized with ClinicalBERT weights (Huang et al., 2019); (2) Position-Enhanced
Chunk Embedding Layer merges each content embedding and sequential information of both
the note and its contained chunk into a single representation. The note position information
is represented by a Global Position embedding, while the chunk position information is
encoded by a Local Position embedding; (3) Time-Aware Layer implements a novel Flexible
Time-aware LSTM (FT-LSTM) cell to incorporate temporal information into the chunk
representation learned from the Position-Enhanced Chunk Embedding Layer for generating
heuristic patient representations; and lastly the (4) Classification Layer generates a patient-
level prediction using this learned patient representation.

We compare FTL-Trans’s performance with state-of-the-art methods including BERT
(Devlin et al., 2018) and Clinical BERT (Huang et al., 2019) for five clinical tasks includ-
ing in-hospital mortality, 30-day readmission prediction, Escherichia Coli Infection predic-
tion, Enterococcus Sp. infection prediction, and Klebsiella pneumoniae infection prediction.
These tasks are all extracted from the MIMIC dataset (Johnson et al., 2016). Our exper-
imental evaluation illustrates that FTL-Trans constantly outperforms the state-of-the-art
models up to 5% in Area Under the Receiver Operating Characteristic curve (AUROC) and
up to 6% in accuracy.

Clinical Relevance. During a patient’s stay in the hospital, tens or even hundreds
of clinical notes are created. Each note in turn consists of hundreds of words. Healthcare
workers from doctors to nurses document the patients’ status and their diagnosis in their
notes as they care for the patient. In addition, they also note clinical decisions after re-
viewing previous treatment with the help of these notes. However, since the clinical notes
are too long to carefully read, potentially valuable information in the clinical notes may
go unnoticed by clinicians - potentially risking health or even life. Also, the sequential
order and timing of clinical notes are both known to potentially be critical indicators on
the outcome of the health status of a patient. In this work, we propose a deep learning
model that exploits clinical notes for making patient-level predictions about critical medical
conditions, including hospital-acquired infections, in-hospital mortality, and re-admission.
While our approach is not the first to utilize clinical notes for prediction tasks, we design a
unique model architecture for exploiting the multi-level sequential structure and temporal
information characteristic of clinical notes. These tend to frequently be ignored by previous
works. Healthcare professionals could potentially gleam additional complementary informa-
tion about a patient’ health conditions beyond their own perspective and diagnosis. Alerts
generated by our model may help medical staff intervene earlier in a patient’s treatment due
to identifying a possible concern more swiftly. In particular, the value and importance both
of multi-level sequential information and temporal information of clinical notes are being
revealed by our work. Future clinical research which focuses on reviewing the treatment
process can make use of our model to analyze the impact of order and timing of medical
intervention on a patient’s clinical outcome.
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Generalizable Insights about Machine Learning in the Context of Healthcare
In general, the following insights can be obtained from this work.

e The structure of clinical notes sequences naturally corresponds to a multi-level hier-
archy, rendering it challenging to develop a model that effectively utilizes these rich
resources for predicting a patient’s outcomes. FTL-Trans can capture the multi-level
sequential structure of clinical notes sequences by its hierarchical model design and the
novel global and local position embeddings. Our evaluation results show that FTL-
Trans consistently outperforms other state-of-the-art transformer-based architectures
which do not consider the multi-level sequential structure.

e Clinical notes are in practice not regularly-spaced across time. In fact, we find that the
temporal information of clinical notes plays an important role in predicting patients’
outcomes. We introduce FT-LSTM, a novel time-aware LSTM cell structure, into
our proposed FTL-Trans deep learning architecture. This component successfully
handles temporal information of clinical notes and this way effectively improves the
predictions.

2. Related Work

Clinical Note Classification Many works have utilized clinical notes for classification
tasks. Lehman et al. (2012) applied the Hierarchical Dirichlet Processes (HDP), a topic
learning technique, to extract the topic distribution of clinical concepts from clinical notes
to predict medical outcomes. Grnarova et al. (2016) uses a convolutional neural network
(CNN) to represent a clinical note for the mortality prediction. Dubois et al. (2017) propose
two different approaches to summarize clinical notes into a patient representation. One
of them is to use GloVe (Pennington et al., 2014) to learn word embeddings and then
aggregate these word embeddings into patient-level embedding. The other approach is to
use a Recurrent Neural Network (RNN) with an embedding layer to construct the patient
representation. Boag et al. (2018) investigate the bag of words (BOW), word2vec, and the
combination of word2vec and Long Short-Term Memory (LSTM) to build representations
for clinical notes. Then they compare their performance on multiple clinical tasks. The
result suggests that different representations have different strengths.

However, these aforementioned works (Boag et al., 2018; Dubois et al., 2017) are based
on BOW, word2vec, and Glove, which are context-independent models, that is, they cannot
capture word position information. Sen et al. (2019) propose a hierarchical RNN with
hierarchical attention for classification of documents series, which incorporates the position
information of words by RNN. But it can only handle a fixed number of words from each
note, while the rest of the words are ignored.

More recently, BERT model (Devlin et al., 2018) has achieved significant success in
many NLP tasks by pre-training a deep bidirectional representation on unlabeled text,
jointly conditioned on both left and right contexts. BERT architecture takes the context
and the order of words into account. Owing to this success, variants of the BERT model has
been proposed for the clinical domain. In particular, ClinicalBERT (Huang et al., 2019), an
application of the BERT model to the clinical domain, is pre-trained on clinical notes from
the MIMIC dataset (Johnson et al., 2016). Since trasformer-based models impose a length



TIME-AWARE TRANSFORMER-BASED ARCHITECTURE

constraint on the input text, Clinical BERT splits clinical notes into equal-length chunks and
makes a prediction for each chunk. The prediction for the patient is then an aggregation
of predicted values from each chunk. This approach does not consider the creation time
of each clinical note. Further, it also ignores the multi-level sequential information in the
sequence of clinical notes.

Time-Aware Models Traditional recurrent neural networks, such as RNN and LSTM,
often make the assumption that the time gaps between the elements of a sequence are
uniformly distributed. This assumption does not always hold in real-world data. Hence,
some methods incorporate time information into the model to address this time irregularity
issue. RETAIN model (Choi et al., 2016) examines EHR data in reverse time order to assign
higher attention to recent clinical visits. T-LSTM, a variant of LSTM, takes the elapsed
time between events into account (Baytas et al., 2017). The memory cell in T-LSTM is
adjusted in a way that longer the elapsed time, smaller the effect of previous memory to the
current output. In Chen et al. (2017), a time-aware attention mechanism is proposed. Time
differences between events are used to decay the weight of previous events before being fed
into the contextual module. Su et al. (2018) propose a universal time-decay function to
mimic the complex contextual patterns in dialogues.

Bai et al. (2018) propose Timeline, an interpretable deep learning model. Timeline
learns time decay factors for a disease so the long term impact of chronic events and the
short-term effect of acute events can be captured separately. Kumar et al. (2019) propose
a temporal attention layer to project the user embeddings in the sequential user-items
interactions. The temporal attention layer converts elapsed time into a time-context vector
and has an element-wise product with the previous embedding. ATTAIN (Zhang et al.,
2019) is a time-aware disease progression model that utilizes the attention mechanism to
generate decay weights from the time interval between previous events and the current
event. It then uses these weights to discount previous memory cells. These models assume
that the influence of previous events decays over time, which may not be true in some cases.
Some previous works (Chen et al., 2017; Baytas et al., 2017) use a fixed function of time
intervals to capture the change of temporal importance. Yet this does not always reflect
the actual change of temporal importance. However, the change of temporal influence over
time is task-dependent. For different clinical tasks, the influence of clinical event changes
over time may exhibit distinct trends.

3. Cohort

Our experiment data is extracted from the MIMIC-IIT (Medical Information Mart for In-
tensive Care III) database (Johnson et al., 2016). MIMIC-III is comprised of de-identified
health data associated with over 40,000 patients who stayed in intensive care units of the
Beth Israel Deaconess Medical Center in Boston, MA, between 2001 and 2012. MIMIC-III
is a commonly used dataset in clinical machine learning studies (Baytas et al., 2017; Huang
et al., 2019; Alsentzer et al., 2019; Sen et al., 2019). We extract clinical notes for a variety
of patient cohorts from the NoteFvents table for our evaluation tasks. The creation times
of the clinical notes we use in our model are the charttimes from the NoteFvents table. In
NoteFEvents table, there are 2,083,180 notes from 15 categories. These categories are Case
Management, Consult, ECG, Echo, Discharge summary, General Nursing, Nursing/other,
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Nutrition, Pharmacy, Physician, Radiology, Rehab Services, Respiratory, Social Work. We
use all types of notes unless otherwise stated in the cohort-specific descriptions. We extract
five cohorts from the MIMIC datasets, details of which are provided below.

e In-hospital Mortality Prediction. To form our in-hospital mortality cohort, we
use the hospital_expire_flag from the Admissions table. If this flag is set to 1, this
indicates that the patient has passed away in the critical care unit. There are 5,854
admissions where hospital_ezpire_flag=1. We use the clinical notes of a patient from
their admission until one day before the patient’s death. This is to make sure no direct
mention of a patient’s outcome is included in the data. Therefore, the patients who
have only stayed one day are filtered out, because all of their notes are from the date
of death or discharge. Remaining 5,287 patients form our mortality-positive cohort.
Then we subsample a equal-size negative cohort of 5,287 patients among the ones
where hospital_expire_flag=0. We remove the clinical notes from the day of discharge,
as well as discharge summaries, for this negative cohort, as these notes tend to include
the patient’s clinical outcome.

e 30-day Readmission Prediction. In the Admissions table, re-admitted patients
without scheduled appointments within 30 days of a prior discharge date are marked
with a readmission flag. All other admissions are considered negative. We follow the
data extraction procedures in Huang et al. (2019) to filter out the in-hospital death
and newborn admissions. The remaining 2,960 cases form our readmission-positive
cohort. Then we subsample a negative cohort of 2,960 cases among the readmission-
negative set.

e Escherichia Coli (E. coli) Infection Prediction. To form the Escherichia Coli
Infection prediction cohort, we use the table MicrobiologyEvents for locating the tests
associated with the organism 80002 - Escherichia Coli. Patients with at least one
positive result for this microorganism are labeled positive. Patients with no record
of this test are labeled negative. We use the clinical notes of a patient from their
admission until one day before the time of the microbiology test. This is to make sure
no direct mention of a patient’s test result is included in the data. Patients who receive
this test result within the first day of their admission are filtered out because all of
their notes before the test are from the same date of the test. Of 3,082 E. coli-positive
patients, 1,894 patients are remained to form the E. coli positive cohort. We randomly
subsample 1,894 admissions among the negative patients to form the negative cohort.
For the negative cohort, clinical notes up until the half-way of patient’s hospital stay
are used, following common practice (Wiens et al., 2012; Sen et al., 2017). For the
same reason mentioned in the mortality cohort descriptions, we do not keep discharge
summaries in this cohort.

e Enterococcus Species (Enterococcus Sp.) Infection Prediction. For the
Enterococcus Sp. infection cohort, we use the table Microbiologyevents for locating
the test associated with the organism 80053 - Enterococcus Sp.. Patients with at least
one positive result for this microorganism are labeled positive. Patients with no record
of this test are labeled negative. We use the same procedure as that for E. coli to filter
out the clinical notes that we cannot use. Of 2,884 Enterococcus Sp. positive patients,
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2,301 have enough note events. These patients form the Enterococcus Sp. positive
cohort. We randomly subsample 2,301 admissions among the negative patients to
form the negative cohort. We use half-way of the negative admissions data and as
what we do in the E. coli infection cohort. Also, discharge summaries are not used
here.

e Klebsiella pneumoniae (K. pneumoniae) Infection Prediction. To form the
Klebsiella pneumoniae infection cohort, we use the table microbiologyevents for locat-
ing the tests associated with the organism 80004 - Klebsiella pneumoniae. Patients
with at least one positive result for this microorganism are labeled positive. Patients
with no record of this test are labeled negative. Following the same procedure as
for E. coli and Enterococcus, we filter out the clinical notes that cannot be used.
Of 1,575 K. pneumoniae positive patient admissions, 1,046 have enough note events.
These patient admissions form the K. pneumoniae positive cohort. We randomly sub-
sample 1,046 admissions among the negative patient admissions to form the negative
cohort. We use half-way of the negative admissions data. We also drop the discharge
summaries.

3.1. Data Preprocessing

Following the same procedure as for ClinicalBERT (Huang et al., 2019), we first remove
punctuation and lowercase text in clinical notes. Private information such as the names of
medical staff and patients’ are de-identified due to privacy concerns. We then remove all
de-identified information in notes. For the notes which do not have charttime value, we
use 23:59:59 in their corresponding chartdate as their charttime. Then, we use WordPiece
embedding (Wu et al., 2016) to tokenize each note and split it into equal-size chunks. We
use 128 as the chunk size (i.e., 128 tokens in each chunk). Statistics about all five datasets
are presented in Table 1.

Table 1: Cohort Statistics

Statistics Dataset
s Mortality Readmission E. coli Enterococcus Sp. K. pneumoniae
. Mean 36.10 32.10 27.60 26.61 29.27
# Notes / Patient \/ojian 16 15 13 13 13
Mean 227.82 291.43 214.35 207.33 210.41
# Words [ Note /o jian 146 164 140 141 140
Total # Notes 381718 190004 104531 122473 61164
Total # Patients 10574 5920 3788 4602 2092

4. Methodology
4.1. Problem Definition

For a patient cohort consisting of K patients, the sequence of clinical notes associated
with the k-th patient can be represented as N'¥) = {Nl(k), N2(k), e NT(:(),C)} along with their

corresponding creation time T = {tgk),tgk), ..,tf:gk)} where m(¥) denotes k-th patient’s
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total number of clinical notes. For k,l € [1, K], m® does not necessarily equal m®.

Each note Ni(k) contains a sequence of tokens {wgk), wék), s wr(l]f)} where the total number

of tokens ngk) can vary in each note. We aim to build a model that uses the set of pa-
tient’s clinical notes sequence N = {N N N} the corresponding creation time
sequence T = {7'(1),7'(2), L TE )}, and the true labels of the patients’ clinical outcome
V={yW,y@ .y} y* {01} (e.g., 1 indicates an in-hospital death and 0 indicates
survival) to predict the probability of a patient having the positive clinical outcome (e.g.,
in-hospital death). For patient k, the goal is to learn a mapping:

< N® 7k 5, P(label = 1\N(k)7T(k)) 1)

where P(label = 1|/\/(k), T(k)) € [0,1]. As we discussed in the beginning of this paragraph,
N®) is an ordered sequence of notes, and each note in it is also an ordered sequence
of tokens. This multi-level sequential information in N'*) along with the time information
T %) is taken into account by our model. For simplicity in the following sections, we describe
our method for a single patient and drop the superscript (k) hereafter.

Table 2: Basic Notation

Notation for A Single Patient
Notation Explanation

N; The patient’s i-th clinical note
m Total number of note for the patient
0; Total number of chunks in note N;
N;C; The j-th chunk in note N;
Total number of token in each chunk
le\th The I-th token in chunk N;C}
E]N ¢ The chunk content embedding of chunk N;C}
G; The global position embedding of each chunk in note V;
L; The local position embedding of j-th chunk in each note
RY: The position-enhanced chunk embedding of chunk N;C;
A?Nz The time interval between the current chunk N;C; and the
J next chunk, which could be either N;Cj11 or N;11Cq
A?Nz The time interval between the current chunk N;C; and the
J previous chunk, which could be either N;C;_1 or N;_1C,,_,
Y The label of the patient
7 The prediction of y

where i =1,...m,j=1,...,0,and [ =1,...,p

4.2. FTL-Trans Overview

We propose a hierarchical model structure to capture the temporal and multi-level sequen-
tial information within clinical notes. Our proposed model extracts a single, patient-level
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representation from temporal patient notes which could be used to predict clinical outcomes,
such as mortality or readmission prediction. Figure 2 shows the architecture of the proposed
model framework, which we call FTL-Trans. FTL-Trans is composed of four layers. The
first layer is the Chunk Content Embedding Layer (Section 4.3), which reads the tokens
within each equal-length subsequence of a patient’s clinical notes (“chunk”) and encodes
the linguistic information into a vector. The second layer is the Position-Enhanced Chunk
Embedding Layer (Section 4.4), which is designed for combining the chunk content embed-
dings with multi-level positional information of notes and chunks. This way, our model
is able to account for the sequential information of notes and chunks. The third layer is
the Time-Aware Layer (Section 4.5), which incorporates both the position-enhanced chunk
embedding and time information to learn a patient-level representation of the sequence
of clinical notes for downstream tasks. The last layer is the Classification Layer (Section
4.6) for making clinical predictions based on the learned patient-level representations. The
following sections describe the details of each layer.

4.3. Chunk Content Embedding Layer

Chunk Content Embedding Layer is designed to encode the text within each chunk. To
model the textual content of each chunk, we use a Clinical BERT layer (Huang et al., 2019),
which is a pre-trained BERT model using a medical corpus.

Since the BERT architecture has a maximum length requirement for input sequence,
each of the patient’s notes Nj is first split into sequences of o; chunks { N;Cy, N;Cy, ..., N;Cy, }.
Each chunk is composed of p tokens N;C; = {wivicj , wév iC < }. Following the com-
mon practice in BERT-based architectures, the first token of a chunk is the special token
‘|CLS]".

Tokens within each chunk are then fed into a transformer-encoder layer. We initialize
this layer with the pre-trained ClinicalBERT model (Huang et al., 2019). The output of
the Clinical BERT layer is the chunk content embedding as follows:

N;
s eeey Wp

EY: = Clinical BERT(N;C}) (2)

In Clinical BERT, this chunk content embedding EJN ¢ is directly used for generating predic-
tion scores for each chunk:

P(label = 1|EN) = o(WE}N) (3)

Where o is the sigmoid function, and W is a parameter matrix. However, FTL-Trans
instead learns to: 1) Differentiate between chunks from different notes with the help of
Position-Enhanced Chunk Embedding Layer, and 2) Learns temporal importance with the
help of Time-Aware Layer.

4.4. Position-Enhanced Chunk Embedding Layer

The Position-Enhanced Chunk Embedding Layer is used to merge each chunk content em-

bedding and sequential information of both note and chunk into a single representation.
The position-enhanced chunk embedding is constructed from three sources: the chunk

content embedding EJN ¢ the position embedding of the notes G;, which we name Global

10
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Figure 2: FTL-Trans is composed of four layers. The Chunk Content Embedding Layer
learns an embedding that contains the semantic textual information in each
chunk. Then the Position-Enhanced Chunk Embedding Layer merges this lin-
guistic representation with position information of the note and chunk into a fi-
nal representation of chunk. Next, the Time-Aware Layer utilizes both the chunk
representation and the time information to learn a single representation for the
sequence of clinical notes. The learned representation is fed into the Classification
Layer for patient-level prediction.

Position embedding and the position embedding of chunks L;, which is called Local Position
embedding. G; indicates the position of the note NN; in the sequence of notes V. L; indicates
the position of the chunk N;Cj in the note IV;. Both L; and G; are vectors with learned
sets of parameters. We first concatenate EJN * with G; and L; then feed it into a single layer
perceptron, followed by a layer normalization (Ba et al., 2016) and dropout (Srivastava

et al., 2014) to get the position-enhanced chunk embedding R;Vi as follows:
N; _ N;
R;"" = Dropout(LayerNorm(We - [E}", Gy, Lj] + bec)) (4)

where W, and b, are trainable parameters shared across chunks.

11
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Figure 3: Flexible Time-aware Long Short Term Memory (FT-LSTM) takes the chunk rep-
resentations R; and the elapsed time at the current time step At; as input. The
elapsed time between consecutive events are irregular. In the FT-LSTM cell, the
previous memory C;_1 is decomposed into long and short term memory and the
short term memory is discounted by a flexible decay function g(At).

4.5. Time-Aware Layer

The time-aware layer is designed for capturing the temporal information in the clinical note
sequences to reflect the change of temporal importance of clinical events over time. One
of the time-aware models is the time-aware LSTM (T-LSTM), which is proposed in Baytas
et al. (2017). In this work, we propose the Flexible T-LSTM (FT-LSTM), which is an
extension of the T-LSTM model. In FT-LSTM, the previous memory is decomposed into
long-term and short-term components. Then the short-term memory will be discounted
by a time decay factor computed by the time between successive elements. Finally, the
discounted short-term memory and long-term memory will be combined to get new memory.
T-LSTM uses a non-increasing function of the elapsed time which transforms the time
interval into a weight assigned to short-term memory content using g(At) = & or g(At) =
m. These functions do not have any trainable parameters. Hence their assumption
is that the temporal influence will always decay in a fixed mode. However, this assumption
may not be true in some cases, especially within the clinical domain. Instead of using a
non-increasing function, we propose a flexible and universal decay function, as shown in
Figure 3, which is inspired by Su et al. (2018):

_ @ ) q3

where ¢; are the weights of the three sub-functions ﬁ, c-At+d, and m, denoting
7

(

the three possible shapes of decay function: convex, linear and concave respectively. All
parameters ¢;, a,b, c,d, f,g are trainable. During the training procedure, a flexible decay
function will be learned by combining the three sub-functions with adjustable weights.
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We use the bidirectional FT-LSTM to capture the temporal influence in two dlrectlons

The bidirectional FT-LSTM is composed of forward cells ﬁ and backward cells h We

train this FT-LSTM by inputting the position-enhanced chunk embedding Rj and the

. . . . . . —N; < —N;
time interval At;v ‘. The time intervals are comprised of the At ;" and At ;. At

denotes the time interval between the current chunk N;C; and the next chunk, which could
. <—N; . .

be either N;Cjyq1 or Nip1Ci. At j denotes the time interval between the current chunk

N;C; and the previous chunk, which could be either N;C;_1 or N;_1C,, ,. We compute

these two time intervals as follows:

N; 0 j ; ) =
A7]’ _ j# 0; ?rz m (©)
ti+1 —t; otherwise
N; 0 ) # 1 =1
AT, = j#Lori (7)
ti —ti—1 otherwise

where o; is the number of chunks in N;.

The elapsed time A t i are fed into h cell, and the elapsed time A t i are fed into
h cell. As shown in Flgure 3, FT-LSTM first decomposes the memory from last cell into
short-term memory C’t_1 = tanh(WyC}—1 + bg) and long-term memory C’t_l =Cy_1— Cf_ 1>
where Wy, b; are the parameters for decomposition, which is learned during the model
training procedure. Using the decay function g(At), FT-LSTM discounts C’ts_1 to get the
discounted short-term memory C | = O |  g(At). Then C | and CF | are combined to
get the adjusted memory Cf | = CE | +C¥ . After the adjusted memory C;_ is obtained,
the following computations for the forget gate, input gate, output gate, candidate memory,
current memory, and current hidden state in the FT-LSTM cell are the same as in the
standard LSTM.

4.6. Classification Layer

The final Classification Layer is for making patient-level pred1_c>t10ns It takes the last hidden
state of FT-LSTM #h, the concatenation of last forward cell i and backward cell h as the
input. h is fed into a dropout layer and a single layer perceptron, followed by a Slngld
function. The output is a prediction score within [0, 1], as shown below:

§ = o(W.Dropout(h) + b.) (8)

where W, and b. are trainable parameters.
We use the cross-entropy loss to train our model:

L= —(ylog(y) + (1 —y)log (1 - 9)) (9)

where g is the prediction and y is the true label.

13
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5. Experiments
5.1. Compared Methods

To evaluate the performance of FTL-Trans, we work with five prediction tasks using cohorts
extracted from MIMIC-III datasets. Our tasks are in-hospital mortality prediction, 30-day
readmission prediction, Escherichia Coli infection prediction, Enterococcus Sp. infection
prediction, and Klebsiella Pneumoniae infection prediction. The details of cohort extraction
can be found in Section 3.

We compare our proposed FTL-Trans model with the following state-of-the-art alterna-
tive approaches:

e BERT: The original BERT model (Devlin et al., 2018) that is pre-trained on Book-
Corpus (Zhu et al., 2015) and English Wikipedia. The sequence of notes is first
split into n chunks {C7,Cy,...C,,}. The BERT model predicts a probability P; for
each chunk, denoting the predicted positive probablh‘% score for chunk C;. We then

compute a patient-level prediction score Pyt mean = <%

e ClinicalBERT Simple Mean (CIBERT-sm): An application of BERT is pre-
trained on MIMIC-IIT dataset (Huang et al., 2019). Clinical BERT model predicts the

positive probability for each chunk, and we report the simple mean of chunk prediction
scores Ppt-mean, computed in the same way as we outlined for the BERT model.

e ClinicalBERT Adjusted Mean (CIBERT-am): Huang et al. (2019) designs a

method to compute the patient-level output probability based on chunk-level prob-
abilities, which is Ppt-mean = %W. Here, n is the number of chunks split
from the patient’s notes. C' is a scaling factor to control the influence of n. Py,
and Pp,eqn are the max and mean values of predicted probability scores across the n

chunks, respectively.

These three models utilize a flattened representation of chunks, thus, they ignore the
sequential and temporal information in the sequence of clinical notes.

Next, we design three variations of our proposed method, all of which take the multi-level
sequential information into account yet in alternative ways.

e LSTM + Transformer (L-Trans): A variation of FTL-Trans model in which we
replace the bidirectional FT-LSTM with a traditional bidirectional LSTM. This model
does not capture the time information of notes.

e Patient-level Transformer 4 Transformer (P-Trans): A variation of FTL-
Trans model in which we replace the bidirectional FT-LSTM with a shallow BERT
model with a single transformer encoder block layer. There is no mechanism to capture
the time information in this model.

e T-LSTM + Transformer (TL-Trans): A variation of FTL-Trans model in which
we replace the bidirectional FT-LSTM with bidirectional T-LSTM (Baytas et al.,
2017) in the time-aware layer. The time decay function in this model is g(At) =

m, which is a fixed function without any trainable parameters.
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We speculate that FTL-Trans should outperform all of these variations as it has the most
flexible temporal importance mechanism (i.e., FT-LSTM layer).

5.2. Results
5.2.1. PERFORMANCE COMPARISON

We use the following popular metrics, namely, Area Under the Receiver Operating Char-
acteristic curve (AUROC), Accuracy, and Area Under Precision-Recall curve (AUPR), for
the evaluation study. We split each cohort into train, validation, and test sets, with a ratio
of 8:1:1. We provide the details of the implementation of our models in the Appendix.

Table 3 reports the results for the five prediction tasks. FTL-Trans outperforms alterna-
tive methods in almost all of the tasks. For AUROC and Accuracy, FTL-Trans has the best
performance across all five tasks. The difference between BERT and both CIBERT-sm and
CIBERT-am suggests that models applied to the clinical domain perform best when they
are pre-trained on a medical corpus. The difference between CIBERT-sm and CIBERT-am
is not significant across the five cohorts. It indicates that the design of the aggregation
method in flat models may not play a key role.

The mortality and readmission cohorts have more notes and a larger number of patients
than other cohorts. The performance of the flat models in these two cohorts is worse than
the performance of the hierarchical models. This illustrates the necessity of using the multi-
level sequential information inherent in clinical notes. We also note that the advantage of
hierarchical models is likely not going to be significant in smaller cohorts. The shortage of
data might cause the contribution from sequential information to become less important.

Our model, FTL-Trans, shows advantages over flat models most of the time, especially
in the AUROC and accuracy metrics. This demonstrates that the combination of exploit-
ing both sequential information and temporal information can make a steady contribution
to the model’s performance. By comparing the performance of L-Trans, TL-Trans, and
FTL-Trans, we see the usage of temporal information for clinical prediction, and, more im-
portantly, the design of the time decay function have a strong impact on the outcome of the
prediction task. The changing trend of temporal importance is task-dependent. A flexible
time decay function with trainable parameters in FT-LSTM can better utilize the temporal
information compared to the fixed time decay function in T-LSTM. On the contrary, a fixed
decay function may worsen the performance of the model.

5.2.2. EFFECTIVENESS OF GLOBAL AND LOCAL POSITION EMBEDDINGS

We also study the performance improvement triggered by the inclusion of the global and
local position embeddings, respectively. For this, we create four variations of the FTL-
Trans model where we allow a varying leves of position-wise information to propagate
within the network. Our baseline for these experiments does not incorporate any positional
information from chunks nor from notes. Global position embedding model utilizes positional
information from only notes, whereas Local position embedding model utilizes positional
information from only chunks. The Multi-level Position Embedding model corresponds to
the FTL-Trans model, where we employ both global and local position embeddings.

Table 4 reports the experimental results for these four model variations. The results
confirm that the use of global and local position embeddings does indeed help to improve the
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Table 3: Performance Comparison of baselines and the proposed model

Mortalit

Method Type Model AUROC Accuracyy AUPR
BERT 88.02 £ 1.77 79.88 £+ 2.21 87.69 + 1.78
Flat Models CIBERT-sm  90.52 + 1.27 82.26 £ 0.98 90.63 £ 1.55
CIBERT-am  90.27 + 1.16 82.25 £+ 1.08 90.26 + 1.54
Hierarchical models L-Trans 94.39 £ 0.65 87.68 £ 1.10 94.39 £+ 0.92
without time info  P-Trans 94.13 £ 0.85 86.58 = 1.73 94.08 £ 0.49
Hierarchical models TL-Trans 93.78 £ 0.96 86.06 + 0.58 93.78 + 1.08
with time info FTL-Trans 95.00 + 0.86 88.17 = 1.05 95.02 + 0.82

Readmission

Method Type Model AUROC Accuracy AUPR
BERT 65.97 £+ 2.07 56.87 £ 2.97 63.32 £+ 2.60
Flat Models CIBERT-sm  72.87 £ 2.15 65.03 £ 2.51 71.64 + 2.59
CIBERT-am  72.85 + 2.10 65.79 + 1.84 71.67 £ 2.51
Hierarchical models L-Trans 76.00 £ 2.16 68.36 = 1.16 74.15 + 4.01
without time info  P-Trans 75.23 + 1.47 67.43 £ 0.51 74.36 + 3.60
Hierarchical models TL-Trans 73.31 £+ 1.36 67.74 + 2.27 71.36 + 2.98
with time info FTL-Trans 76.74 + 2.40 70.61 £ 2.19 74.30 £ 3.61

Escherichia Coli

Method Type Model AUROC Accuracy AUPR
BERT 70.07 £ 1.15 62.79 £ 2.37 70.56 £+ 0.97
Flat Models CIBERT-sm  71.09 £ 1.79 64.37 £ 2.46 70.55 £+ 1.39
CIBERT-am  71.50 + 1.68 64.20 £+ 2.01 71.29 + 1.29
Hierarchical models L-Trans 72.26 £ 0.97 67.15 £ 1.81 66.84 £+ 2.05
without time info P-Trans 71.33 + 1.37 64.64 + 1.88 71.41 + 0.98
Hierarchical models TL-Trans 72.00 £+ 3.10 64.42 + 3.85 69.38 + 2.23
with time info FTL-Trans 74.88 +£ 2.99 68.02 + 3.20 72.41 + 1.81

Enterococcus Sp.

Method Type Model AUROC Accuracy . AUPR
BERT 72.47 + 2.60 66.05 £+ 2.49 70.63 £ 1.19
Flat Models CIBERT-sm  74.63 £+ 2.19 67.86 + 2.75 71.72 £ 2.67
CIBERT-am  74.44 £ 1.71 67.46 £+ 2.40 71.36 £ 2.36
Hierarchical models L-Trans 73.45 £+ 2.33 65.83 + 1.14 68.94 + 3.71
without time info P-Trans 74.09 + 1.64 65.62 + 1.42 71.37 £+ 2.26
Hierarchical models TL-Trans 73.10 £ 2.94 66.05 = 0.95 69.39 + 4.51
with time info FTL-Trans 76.47 +£ 2.25 69.35 £1.99 73.43 + 3.14

K. pneumoniae

Method Type Model AUROC Accuracy AUPR
BERT 67.85 £+ 2.12 60.87 £ 1.74 66.98 £ 2.48
Flat Models CIBERT-sm  69.05 + 3.95 62.86 + 4.74 67.65 + 3.33
CIBERT-am  68.23 £ 3.61 60.95 + 4.75 67.27 £ 2.99
Hierarchical models L-Trans 71.49 £ 0.66 64.84 + 1.69 68.13 + 2.63
without time info P-Trans 70.49 4+ 5.10 63.49 £+ 5.51 71.90 £+ 4.93
Hierarchical models TL-Trans 68.95 £+ 2.47 63.33 £ 1.83 65.72 + 4.48
with time info FTL-Trans 73.20 = 1.80 66.19 £+ 2.15 69.71 4 2.43
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Table 4: Effect of Multi-level Position Embeddings in FTL-Trans

Mortality
Model AUROC Accuracy AUPR
No Position Embedding 94.49 + 0.65 86.93 £ 0.84  94.48 + 0.76
Global Position Embedding 94.35 + 0.82 86.64 + 1.02 94.37 £ 0.75
Local Position Embedding 94.23 + 1.01 86.03 £ 1.73 94.21 £ 1.15

Multi-level Position Embedding

95.00 +£ 0.86 88.17 £+ 1.05 95.02 + 0.82

Model Readmission
AUROC Accuracy AUPR
No Position Embedding 74.53 + 1.60 68.41 + 1.64 71.94 + 2.83
Global Position Embedding 76.62 + 2.42 70.95 £+ 2.53 74.09 £+ 3.62
Local Position Embedding 76.63 £2.40 71.00 £ 2.26 74.06 + 3.63
Multi-level Position Embedding 76.74 + 2.40 70.61 £ 2.19 74.30 £+ 3.61
Escherichia Coli
Model AUROC Accuracy AUPR
No Position Embedding 74.53 £ 1.60 68.43 + 3.56 70.86 + 2.74
Global Position Embedding 75.02 + 2.88 67.68 + 2.98 73.42 + 2.23
Local Position Embedding 75.07 +£ 2.89 68.08 £ 2.59 73.41 £+ 2.15
Multi-level Position Embedding  74.88 + 2.99 68.08 £+ 3.20 72.41 £ 1.81
Enterococcus Sp.
Model AUROC Accuracy AUPR
No Position Embedding 75.61 + 1.84 67.36 + 1.83 71.43 + 3.71
Global Position Embedding 76.40 £+ 2.02 68.91 + 1.37 73.21 £+ 3.73
Local Position Embedding 76.29 + 2.01 68.95 + 1.74 73.07 £ 3.66

Multi-level Position Embedding

76.47 + 2.25 69.35 £ 1.99 73.43 + 3.14

K. pneumoniae

Model AUROC Accuracy AUPR

No Position Embedding 71.86 + 3.13 65.32 + 2.18 67.83 + 2.98
Global Position Embedding 73.15 + 2.23 66.51 + 2.10 69.16 + 1.89
Local Position Embedding 73.20 £ 2.26 66.75 + 2.65 68.93 + 1.93
Multi-level Position Embedding 73.20 + 1.80 66.19 + 2.15 69.71 + 2.43

model’s performance. We also notice that in the mortality cohort, the multi-level position

embedding has a significant advantage over other models. However, in cohorts other than

the mortality, sometimes the model with only global or only local position embeddings

performs better than the model with multi-level position embedding in a few of the metrics.
The most important difference between the mortality cohort and other cohorts is that

the mortality cohort has much more data than others. The mortality cohort has 10,574 pa-
tients and 381,718 notes, while the second-largest data set, the readmission cohort, contains
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5,920 patients and 190,004 notes. This indicates that the shortage of data might cause the
advantage of multi-level position embedding to become less significant.

Another interesting finding is that the ratio of the average number of words per note to
the average number of notes per patient in the mortality dataset is the lowest across the five
cohorts. We know that a note with more words will be split into more chunks. We speculate
that this may have strengthening the influence of global and local position embeddings on
the overall model performance for the mortality cohort.

6. Discussion

A patient’s clinical notes correspond to a sequence of documents generated during the
patient’s stay in a hospital. The abundant information in clinical notes can be leveraged for
supporting clinical prediction. However, the multi-level sequential and temporal information
within clinical notes, along with the interrelationships of these notes, were largely ignored
or at least not fully utilized by previous works.

In this work, we instead propose a novel hierarchical structure based on the transformer-
encoder FTL-Trans model which takes the interrelationships among clinical notes and the
multi-level sequential information into account. Moreover, a novel flexible time-aware layer
in FTL-Trans is incorporated that is capable of learning the relevancy of timing among
notes in a series that may betackles irregularly spaced. FTL-Trans utilizes a trainable time
decay function in the time-aware layer to assign a decay rate to the previous event. This
mimics the temporal influence of the previous event on clinical outcomes.

We evaluate our approach on five clinical prediction tasks, namely, in-hospital mortal-
ity prediction, 30-days readmission prediction, and three infection prediction tasks. Our
evaluation results demonstrate that our model outperforms strong baselines. We conclude
that utilizing the multi-level sequential information and the interrelationship among clinical
notes consistently and in some cases significantly improve the prediction performance. Also,
the flexible design of the time decay function has been shown to be beneficial for reaching
better performance.

6.1. Limitations

One potential limitation of our approach is that some of our evaluation cohorts include a
limited number of patients and clinical notes. For example, K. Pneumoniae cohort contains
2,092 patients and a total of 61,164 notes. These smaller cohort sizes are typical for some
medical outcomes and rare conditions. Yet, our evaluation suggests that our proposed
method tends to achieve a more significant performance improvement whenever more data
is made available for training. Thus we anticipate that with the availability of additional
data additional experiments may confirm a further improvement of our model compared to
state-of-the-art solutions.

Another limitation currently are our data sources. While we have worked with col-
leagues at UMASS Medical Center, medical data can be challenging to get access to due
to the privacy concerns for patients. The clinical notes in MIMIC-III are all from a single
hospital, the Beth Israel Deaconess Medical Center in Boston, MA. Using data from mul-
tiple healthcare institutions may lead to better performance and model training. Finally,
in the MIMIC-III dataset, all the Protected Health Information (PHI) was removed and
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replaced by "PHI” symbols. Some other datasets replace PHI with synthetic, but realistic
and consistent identification. The text distributions in these two types of data could have
significant differences. This all indicates that FTL-Trans cannot be directly applied to the
dataset with synthetic or real identification without pre-training and fine-tuning.

6.2. Future Work

In the future, the hierarchical structure in our proposed FTL-Trans model could be ex-
panded even further. In our current work, for simplicity, we use a single bidirectional
FT-LSTM in the Time-aware Layer to feed chunks across all notes. In future work, we
could add another layer of the FT-LSTM and then first feed the chunks from the same note
into the first layer to generate the note representation. Then each note representation could
be fed into the second layer of FT-LSTM to generate the patient representation. Expanding
our model could reach better prediction performance.

In this work, we focused on studying whether our model design indeed incorporates
temporal and sequential information well. Hence, we implement experiments on balanced
data to avoid some of the other possible challenges. However, for some rare diseases,
there may not be many cases available and thus usable for model training. Another future
direction to consider could be to use unbalanced data for model training to assess the
effectiveness of our proposed technology for such practical data sets. Few-shot learning and
prediction for those rare diseases could also be explored.
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Appendix A.

We ran our experiments on a Tesla V100 GPU. To fit the data in the GPU memory (16GB),
we use the last 64 chunks of each patient to train and evaluate the model. Earlier chunks are
discarded to keep an equal number of chunks per patient. We use the Bert Adam optimizer
Wolf et al. (2019) with an initial learning rate of 2 x 1075, a warm-up proportion of 0.1. We
implement our models in Pytorch. The pre-trained BERT model that we used is from the
“pytorch-transformers” library (renamed as “Transformers” since V2.0.0), which is avail-
able at https://github.com/huggingface/transformers. The pre-trained Clinical BERT
model and code are loaded from https://github.com/kexinhuang12345/clinicalBERT.
Each model is trained for 3 epochs. For every task, We report average evaluation results
of each model from 5 random initialization. Training time varies depending on the cohort
size. The average training time of FTL-Trans on the mortality cohort is 1.56 hours/epoch.

For the flexible time decay function g(A(t)), we conducted a hyper-parameter search for
parameters in it. Optimum initial values found are a =1, b =1, ¢ = 2.9, d = 0.02, f = 4.5,
g =2.5, ql = ¢2 = ¢3 = 0.33. We also have a constraint on g(A(¢)) to make sure g(A(t))
is within [0, 1]. For the other parameters in FT-LSTM, we initialized them using a normal
distribution with mean = 0 and standard deviation = 0.02.

22


https://github.com/huggingface/transformers
https://github.com/kexinhuang12345/clinicalBERT

	Introduction
	Related Work
	Cohort
	Data Preprocessing

	Methodology
	Problem Definition
	FTL-Trans Overview
	Chunk Content Embedding Layer
	Position-Enhanced Chunk Embedding Layer
	Time-Aware Layer
	Classification Layer

	Experiments
	Compared Methods
	Results
	Performance Comparison
	Effectiveness of Global and Local Position Embeddings


	Discussion
	Limitations
	Future Work

	

