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Background. Modern machine learning (ML) methods have seen tremendous growth and technical advances in 
methodology, which have great potential to inform clinical predictions. However, widespread adoption of ML models 
in clinical practice remain limited due to concerns with performance, trust, transparency, usability, actionability, and 
ineffectiveness in clinical trials.1 Unplanned or preventable hospital admissions (PHAs), which cost $17 billion 
annually for the U.S. Centers for Medicare and Medicaid Services (CMS), are key outcomes that may benefit from 
ML and were the subject of the recent CMS Artificial Intelligence (AI) Challenge.2,3 As part of our top 25 submission, 
we developed the CLinically Explainable and Actionable Risk (CLEAR) model, an interpretable deep-learning model 
to predict PHAs, and a user-friendly app that presents accurate and actionable predictions while dynamically 
incorporating clinician feedback. 
 
Methods. The CLEAR model is predicated upon the recurrent neural network (RNN) framework proposed by Liu, et 
al.4 for modeling clinical time-series. CLEAR utilizes temporal windowing and dual attention mechanisms to identify 
important episodes in care, capture complex dependencies, remain robust to challenges with longitudinal observational 
data, and identify highly-predictive patient features. CLEAR incorporates RNNs, sequence segmentation, clinical 
concept embeddings, and multiple attention mechanisms to generate patient-level predictions. Output from this 
technical framework is accessible via an app and is coupled with clinician-feedback to learn the set of features that are 
clinically actionable. To assess the models’ discriminative ability to predict unplanned admissions within 30 days, the 
CLEAR model (CLEAR-Interpretable) was validated on a 5% subset (2.6 million claims, 78,000 patients) of Medicare 
data. We calculated the area under the receiver operating characteristic (AUROC) to assess predictive performance. 
 
Results. In our experiments, the CLEAR model 
without attention (AUROCCLEAR-RNN = 0.786) 
exceeded the performance of prior models as well 
as the logistic regression baseline (AUROCLR = 
0.697). Previously published models that predicted 
PHA using 2008 CMS claims data demonstrated 
AUROCs of 0.60-0.63; more recent methods 
achieve AUROCs of 0.55-0.75.5 The full CLEAR 
model with dual attention under-performed the 
other models in this performance metric but was 
still in line with prior baselines 
(AUROCCLEAR-Interpretable = 0.626), demonstrating the 
tradeoff between interpretability and accuracy. 
 
Conclusion. CLEAR is an effective method to 
predict PHAs, with predictive performance that is 
comparable to or exceeds prior models while 
promoting interpretability and actionability. In 
contrast to prior models, CLEAR predicts any 
PHA, which is both more challenging and more 
generalizable to the larger Medicare population. 
The dual attention mechanisms in CLEAR and 
user-friendly, interactive app interface can offer insight to let clinicians look inside the black box and enhance 
actionability. 
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